Skip to main content
Erschienen in: Journal of Scientific Computing 1/2022

01.04.2022

Generalized Fractional Algebraic Linear System Solvers

verfasst von: X. Antoine, E. Lorin

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is devoted to the numerical computation of algebraic linear systems involving several matrix power functions; that is finding x solution to \(\sum _{\alpha \in \mathbb {R}}A^{\alpha }x=b\). These systems will be referred to as Generalized Fractional Algebraic Linear Systems (GFALS). In this paper, we derive several gradient methods for solving these very computationally complex problems, which themselves require the solution to intermiediate standard Fractional Algebraic Linear Systems (FALS) \(A^{\alpha }x=b\), with \(\alpha \in \mathbb {R_+}\). The latter usually require the solution to many classical linear systems \(Ax=b\). We also show that in some cases, the solution to a GFALS problem can be obtained as the solution to a first-order hyperbolic system of conservation laws. We also discuss the connections between this PDE-approach and gradient-type methods. The convergence analysis is addressed and some numerical experiments are proposed to illustrate and compare the methods which are proposed in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Achar, B.N., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. 2013, 290216 (2013)CrossRef Achar, B.N., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. 2013, 290216 (2013)CrossRef
2.
Zurück zum Zitat Antoine, X., Besse, C., Duboscq, R., Rispoli, V.: Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations. Comput. Phys. Commun. 219, 70–78 (2017)MathSciNetCrossRef Antoine, X., Besse, C., Duboscq, R., Rispoli, V.: Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations. Comput. Phys. Commun. 219, 70–78 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Antoine, X., Lorin, E.: Double-preconditioning for fractional linear systems. Application to fractional Poisson equations, Submitted (2020) Antoine, X., Lorin, E.: Double-preconditioning for fractional linear systems. Application to fractional Poisson equations, Submitted (2020)
4.
Zurück zum Zitat Antoine, X., Lorin, E.: ODE-based double-preconditioning for solving linear systems \({A}^{\alpha }x = b\) and \(f({A})x=b\). Numer. Lin. Alg. with App. 28,(6) (2021) Antoine, X., Lorin, E.: ODE-based double-preconditioning for solving linear systems \({A}^{\alpha }x = b\) and \(f({A})x=b\). Numer. Lin. Alg. with App. 28,(6) (2021)
5.
Zurück zum Zitat Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers. Numerical Algorithms, 87, 2021 Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers. Numerical Algorithms, 87, 2021
6.
Zurück zum Zitat Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)MathSciNetCrossRef Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)MathSciNetCrossRef
7.
Zurück zum Zitat Bologna, M., West, B., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002) Bologna, M., West, B., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002)
8.
Zurück zum Zitat Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)MathSciNetCrossRef Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)MathSciNetCrossRef
9.
Zurück zum Zitat Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007). First-order systems and applications Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007). First-order systems and applications
10.
Zurück zum Zitat Bhatti, M.: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contem. Math. Sci. 2, 943–950 (2007)CrossRef Bhatti, M.: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contem. Math. Sci. 2, 943–950 (2007)CrossRef
11.
Zurück zum Zitat Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)CrossRef Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)CrossRef
12.
Zurück zum Zitat Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)MathSciNetCrossRef Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer-Verlag, Berlin (2016) Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer-Verlag, Berlin (2016)
14.
Zurück zum Zitat Davies, P.I., Higham, N.J.: Computing \(f({A})b\) for matrix functions \(f\). In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp. 15–24. Springer, Berlin (2005) Davies, P.I., Higham, N.J.: Computing \(f({A})b\) for matrix functions \(f\). In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp. 15–24. Springer, Berlin (2005)
15.
Zurück zum Zitat Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef
16.
17.
Zurück zum Zitat Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010)MATH Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010)MATH
18.
Zurück zum Zitat Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28(3), 788–804 (2006)MathSciNetCrossRef Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28(3), 788–804 (2006)MathSciNetCrossRef
19.
Zurück zum Zitat Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({A}^\alpha, \log ({A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)MathSciNetCrossRef Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({A}^\alpha, \log ({A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)MathSciNetCrossRef
20.
Zurück zum Zitat Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2008). Theory and computation Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2008). Theory and computation
21.
Zurück zum Zitat Iannazzo, B.: On the Newton method for the matrix \(p\)th root. SIAM J. Matrix Anal. Appl. 28(2), 503–523 (2006)MathSciNetCrossRef Iannazzo, B.: On the Newton method for the matrix \(p\)th root. SIAM J. Matrix Anal. Appl. 28(2), 503–523 (2006)MathSciNetCrossRef
22.
Zurück zum Zitat Jonsson, B.L.G., Fröhlich, J., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20, 1031–1075 (2007)MathSciNetCrossRef Jonsson, B.L.G., Fröhlich, J., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20, 1031–1075 (2007)MathSciNetCrossRef
23.
Zurück zum Zitat Kenney, C., Laub, A.J.: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12(2), 273–291 (1991)MathSciNetCrossRef Kenney, C., Laub, A.J.: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12(2), 273–291 (1991)MathSciNetCrossRef
24.
Zurück zum Zitat Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D Nonlinear Phenom. 332, 41–54 (2016)CrossRef Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D Nonlinear Phenom. 332, 41–54 (2016)CrossRef
25.
Zurück zum Zitat Kusnezov, D., Bulgac, A., Dang, G.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1129 (1999)CrossRef Kusnezov, D., Bulgac, A., Dang, G.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1129 (1999)CrossRef
27.
Zurück zum Zitat Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef
28.
29.
Zurück zum Zitat Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix \(p\)th root. Numer. Linear Algebra Appl. 16(11–12), 951–970 (2009)MathSciNetCrossRef Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix \(p\)th root. Numer. Linear Algebra Appl. 16(11–12), 951–970 (2009)MathSciNetCrossRef
30.
Zurück zum Zitat LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves
31.
Zurück zum Zitat Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNetCrossRef Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNetCrossRef
32.
Zurück zum Zitat Lomin, A.: Fractional-time quantum dynamics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef Lomin, A.: Fractional-time quantum dynamics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef
33.
Zurück zum Zitat Lorin, E., Tian, S.: A numerical study of fractional linear algebraic system solvers. Submitted., (2020) Lorin, E., Tian, S.: A numerical study of fractional linear algebraic system solvers. Submitted., (2020)
35.
Zurück zum Zitat Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)MathSciNetCrossRef Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)MathSciNetCrossRef
36.
Zurück zum Zitat Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)CrossRef Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)CrossRef
37.
Zurück zum Zitat Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37. Springer-Verlag, New York (2000)MATH Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37. Springer-Verlag, New York (2000)MATH
38.
Zurück zum Zitat Saad, Y., Schultz, M.H.: GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRef Saad, Y., Schultz, M.H.: GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRef
39.
Zurück zum Zitat Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24(4), 971–989 (2003)MathSciNetCrossRef Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24(4), 971–989 (2003)MathSciNetCrossRef
40.
Zurück zum Zitat Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, (1989) Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, (1989)
42.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin (1999)CrossRef Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin (1999)CrossRef
43.
Zurück zum Zitat Tsai, J.S.H., Shieh, L.S., Yates, R.E.: Fast and stable algorithms for computing the principal \(n\)th root of a complex matrix and the matrix sector function. Comput. Math. Appl. 15(11), 903–913 (1988)MathSciNetCrossRef Tsai, J.S.H., Shieh, L.S., Yates, R.E.: Fast and stable algorithms for computing the principal \(n\)th root of a complex matrix and the matrix sector function. Comput. Math. Appl. 15(11), 903–913 (1988)MathSciNetCrossRef
44.
Zurück zum Zitat Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)MathSciNetCrossRef Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)MathSciNetCrossRef
45.
Zurück zum Zitat West, B.: Quantum Lévy propagators. J. Phys. Chem. B 104, 3830–3832 (2000)CrossRef West, B.: Quantum Lévy propagators. J. Phys. Chem. B 104, 3830–3832 (2000)CrossRef
Metadaten
Titel
Generalized Fractional Algebraic Linear System Solvers
verfasst von
X. Antoine
E. Lorin
Publikationsdatum
01.04.2022
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2022
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-022-01785-z

Weitere Artikel der Ausgabe 1/2022

Journal of Scientific Computing 1/2022 Zur Ausgabe

Premium Partner