Skip to main content
Top
Published in: Cellulose 5/2020

04-01-2020 | Original Research

Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency

Authors: Jihye Lim, J. R. Kim

Published in: Cellulose | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface modification—altering geometric structures or surface energy—is a key factor in improving liquid resistance/repellency on a solid surface. In particular, roughness from geometric structures provides void spaces that enhance energy barriers in nanofibers that a liquid droplet should overcome to penetrate, thus preventing the transition of a liquid drop from the Cassie–Baxter state to Wenzel state. In this work, the design of a geometric structure that performs highly in liquid resistance/repellency was proposed by extending the Cassie–Baxter model into cellulose acetate (CA) nanofibers, entrapping SiO2 nanoparticles, and examining the impact of void spaces created by the entrapped SiO2 into nanofibers in prediction and experiment. The extended Cassie–Baxter equation was simplified using H*, which is characterized by Tnp. The prediction and measurement of the apparent contact angle \( \theta_{nf} \) in CA-SiO2 nanofabrics showed good agreement, and the results emphasized the role of void space in improving liquid resistance/repellency while minimizing chemical treatments for altering surface energy and geometric structure.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A 367:1445–1486CrossRef Bhushan B (2009) Biomimetics: lessons from nature—an overview. Philos Trans R Soc A 367:1445–1486CrossRef
go back to reference Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:100–108CrossRef Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:100–108CrossRef
go back to reference Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
go back to reference Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interfaces 8:761–775CrossRef Eadie L, Ghosh TK (2011) Biomimicry in textiles: past, present and potential. An overview. J R Soc Interfaces 8:761–775CrossRef
go back to reference Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307CrossRef Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307CrossRef
go back to reference Lee HJ, Owens JR (2011) Motion of liquid droplets on a superhydrophobic oleophobicsurface. J Mater Sci 46:69–76CrossRef Lee HJ, Owens JR (2011) Motion of liquid droplets on a superhydrophobic oleophobicsurface. J Mater Sci 46:69–76CrossRef
go back to reference Lim J, Powell N, Lee H, Michielsen S (2016) Integration of yarn compression in modeling structural geometry of liquid resistant–repellent fabric surfaces and its impact on liquid behavior. J Mater Sci 51:7199–7210CrossRef Lim J, Powell N, Lee H, Michielsen S (2016) Integration of yarn compression in modeling structural geometry of liquid resistant–repellent fabric surfaces and its impact on liquid behavior. J Mater Sci 51:7199–7210CrossRef
go back to reference Lim J, Powell N, Lee HJ, Michielsen S (2017) Geometric impact of void space in woven fabrics on oil resistance or repellency. J Mater Sci 52:8149–8158CrossRef Lim J, Powell N, Lee HJ, Michielsen S (2017) Geometric impact of void space in woven fabrics on oil resistance or repellency. J Mater Sci 52:8149–8158CrossRef
go back to reference Liu C, Bai R (2005) Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. J Membr Sci 267:68–77CrossRef Liu C, Bai R (2005) Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. J Membr Sci 267:68–77CrossRef
go back to reference Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B 40:2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B 40:2119–2129CrossRef
go back to reference Lv D, Zhu M, Jiang Z, Jiang S, Zhang Q, Xiong R, Huang C (2018) Green electrospun nanofibers and their application in air filtration. Macromol Mater Eng 303:1800336CrossRef Lv D, Zhu M, Jiang Z, Jiang S, Zhang Q, Xiong R, Huang C (2018) Green electrospun nanofibers and their application in air filtration. Macromol Mater Eng 303:1800336CrossRef
go back to reference Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19:8343–8348CrossRef Marmur A (2003) Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19:8343–8348CrossRef
go back to reference Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010CrossRef Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010CrossRef
go back to reference Mikaeili F, Gouma PI (2018) Super water-repellent cellulose acetate mats. Sci Rep 8:12472CrossRef Mikaeili F, Gouma PI (2018) Super water-repellent cellulose acetate mats. Sci Rep 8:12472CrossRef
go back to reference Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23:3157–3161CrossRef Nosonovsky M (2007) Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23:3157–3161CrossRef
go back to reference Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem E 58:333–343CrossRef Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem E 58:333–343CrossRef
go back to reference Reyssat M, Pépin A, Marty F, Chen Y, Quéré D (2007) Bouncing transitions onmicrotextured materials. EPL (Europhys Lett) 74:306CrossRef Reyssat M, Pépin A, Marty F, Chen Y, Quéré D (2007) Bouncing transitions onmicrotextured materials. EPL (Europhys Lett) 74:306CrossRef
go back to reference Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417:811CrossRef Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417:811CrossRef
go back to reference Tuteja A, Choi W, Mabry J, McKinley G, Cohen R (2008) Engineering superhydrophobic and superoleophobic surfaces. Abstr Bio-Nanotechnol Conf TradeShow 1:439–442 Tuteja A, Choi W, Mabry J, McKinley G, Cohen R (2008) Engineering superhydrophobic and superoleophobic surfaces. Abstr Bio-Nanotechnol Conf TradeShow 1:439–442
go back to reference Zhou X, Lin X, White KL, Lin S, Wu H, Cao S, Huang L, Chen L (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821CrossRef Zhou X, Lin X, White KL, Lin S, Wu H, Cao S, Huang L, Chen L (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821CrossRef
go back to reference Zulfiqar U, Hussain SZ, Awais M, Khan MMJ, Hussain I, Husain SW, Subhani T (2016) In-situ synthesis of bi-modal hydrophobic silica nanoparticles for oil–water separation. Colloids Surf A Physicochem Eng Asp 508:301–308CrossRef Zulfiqar U, Hussain SZ, Awais M, Khan MMJ, Hussain I, Husain SW, Subhani T (2016) In-situ synthesis of bi-modal hydrophobic silica nanoparticles for oil–water separation. Colloids Surf A Physicochem Eng Asp 508:301–308CrossRef
Metadata
Title
Geometric structure modification in cellulose acetate nanofibers and its impact on liquid resistance/repellency
Authors
Jihye Lim
J. R. Kim
Publication date
04-01-2020
Publisher
Springer Netherlands
Published in
Cellulose / Issue 5/2020
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02959-z

Other articles of this Issue 5/2020

Cellulose 5/2020 Go to the issue