Skip to main content
Top
Published in: Journal of Materials Science 2/2015

01-01-2015 | Original Paper

Glassy carbon nanofibers from electrospun cellulose nanofiber

Authors: Yingying Liu, Wang Qin, Qiaoying Wang, Ruilai Liu, Haiqing Liu

Published in: Journal of Materials Science | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Glassy carbon nanofibers (g-CNFs) with diameter of ca. 45 nm were prepared from electrospun cellulose nanofibers (CelluNFs) by two sequential steps: stabilization and carbonization. The CelluNFs were stabilized at 400 °C and carbonized at 850 and 1400 °C to produce g-CNFs. The morphology and crystallographic structure of the precursor, stabilized and carbonized nanofibers were characterized by field emission scanning electron microscopy, transmission electron microscopy (TEM), selected-area electron diffraction, and Raman spectroscopy. It was found that the stabilization treatment was very effective in maintaining the nanofiber morphology of the final product g-CNFs. TEM images revealed that the g-CNFs carbonized at 1400 °C showed ribbon-like curved single carbon layer networks throughout the sample. These layers were randomly stacked without any particular sequence, and were looped. Raman spectra confirmed that the g-CNFs contained low content of graphitic crystallites. The I D/I G values indicated that most carbons of g-CNFs are in the amorphous state. The electrical conductivity was dependent on the graphitic microstructure in the g-CNF. It reached to 93.5 S/cm for the g-CNF carbonized at 1400 °C. The g-CNF with good conductivity may find applications in the carbon-based nanodevices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maiyalagan T, Scott K (2010) Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J Power Sources 195:5246–5251CrossRef Maiyalagan T, Scott K (2010) Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J Power Sources 195:5246–5251CrossRef
2.
go back to reference Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10:5507–5519CrossRef Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10:5507–5519CrossRef
3.
go back to reference Kim BJ, Lee YS, Park SJ (2008) A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy 33:4112–4115CrossRef Kim BJ, Lee YS, Park SJ (2008) A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy 33:4112–4115CrossRef
4.
go back to reference Wu MY, Wang QY, Liu XQ, Liu HQ (2012) Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon 51:335–345CrossRef Wu MY, Wang QY, Liu XQ, Liu HQ (2012) Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon 51:335–345CrossRef
5.
go back to reference Marchessault RH (2011) All things cellulose: a personal account of some historic events. Cellulose 18:1377–1379CrossRef Marchessault RH (2011) All things cellulose: a personal account of some historic events. Cellulose 18:1377–1379CrossRef
7.
go back to reference Kuzmenko V, Naboka O, Gatenholm P, Enoksson P (2014) Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon 67:694–703CrossRef Kuzmenko V, Naboka O, Gatenholm P, Enoksson P (2014) Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon 67:694–703CrossRef
8.
go back to reference Kong K, Deng L, Kinloch IA, Young RJ, Eichhorn SJ (2012) Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. J Mater Sci 47:5402–5410. doi:10.1007/s10853-012-6426-y CrossRef Kong K, Deng L, Kinloch IA, Young RJ, Eichhorn SJ (2012) Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. J Mater Sci 47:5402–5410. doi:10.​1007/​s10853-012-6426-y CrossRef
9.
go back to reference Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75CrossRef Deng L, Young RJ, Kinloch IA, Zhu Y, Eichhorn SJ (2013) Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon 58:66–75CrossRef
10.
go back to reference Naboka O, Rodriguez K, Toomadj AF et al (2012) Carbon nanofibers synthesized from electrospun cellulose for advanced material applications. Mater Sci Forum 730–732:903–908CrossRef Naboka O, Rodriguez K, Toomadj AF et al (2012) Carbon nanofibers synthesized from electrospun cellulose for advanced material applications. Mater Sci Forum 730–732:903–908CrossRef
11.
go back to reference Deng L, Young RJ, Kinloch IA et al (2013) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interface 5:9983–9990CrossRef Deng L, Young RJ, Kinloch IA et al (2013) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interface 5:9983–9990CrossRef
12.
go back to reference Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef
13.
go back to reference Wan Y, Zuo G, Yu F, Huang Y, Ren K, Luo H (2011) Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf Coat Technol 205:2938–2946CrossRef Wan Y, Zuo G, Yu F, Huang Y, Ren K, Luo H (2011) Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf Coat Technol 205:2938–2946CrossRef
14.
go back to reference Zhou Z, Lai C, Zhang L et al (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006CrossRef Zhou Z, Lai C, Zhang L et al (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006CrossRef
15.
go back to reference Jenkins GM, Kawamura K (1971) Structure of glassy carbon. Nature 231:175–176CrossRef Jenkins GM, Kawamura K (1971) Structure of glassy carbon. Nature 231:175–176CrossRef
16.
go back to reference Kaburagi Y, Hosoya K, Yoshida A, Hishiyama Y (2005) Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber. Carbon 43:2817–2819CrossRef Kaburagi Y, Hosoya K, Yoshida A, Hishiyama Y (2005) Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber. Carbon 43:2817–2819CrossRef
18.
go back to reference Rajith L, Jissy A, Kumar KG, Datta A (2011) Mechanistic study for the facile oxidation of trimethoprim on a manganese porphyrin incorporated glassy carbon electrode. J Phys Chem C 115:21858–21864CrossRef Rajith L, Jissy A, Kumar KG, Datta A (2011) Mechanistic study for the facile oxidation of trimethoprim on a manganese porphyrin incorporated glassy carbon electrode. J Phys Chem C 115:21858–21864CrossRef
19.
go back to reference Park S, Park DW, Yang CS et al (2011) Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode. ACS Nano 5:7061–7068CrossRef Park S, Park DW, Yang CS et al (2011) Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode. ACS Nano 5:7061–7068CrossRef
20.
go back to reference Lehr J, Williamson BE, Downard AJ (2011) Spontaneous grafting of nitrophenyl groups to planar glassy carbon substrates: evidence for two mechanisms. J Phys Chem C 115:6629–6634CrossRef Lehr J, Williamson BE, Downard AJ (2011) Spontaneous grafting of nitrophenyl groups to planar glassy carbon substrates: evidence for two mechanisms. J Phys Chem C 115:6629–6634CrossRef
21.
go back to reference Du R, Ssenyange S, Aktary M, McDermott MT (2009) Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position. Small 5:1162–1168CrossRef Du R, Ssenyange S, Aktary M, McDermott MT (2009) Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position. Small 5:1162–1168CrossRef
22.
go back to reference Lentz C, Samuel B, Foley H, Haque M (2011) Synthesis and characterization of glassy carbon nanowires. J Nanomater 2011:9CrossRef Lentz C, Samuel B, Foley H, Haque M (2011) Synthesis and characterization of glassy carbon nanowires. J Nanomater 2011:9CrossRef
23.
go back to reference Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown JRM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown JRM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef
24.
go back to reference Harris PFJ (2004) Fullerene-related structure of commercial glassy carbons. Philos Mag 84:3159–3167CrossRef Harris PFJ (2004) Fullerene-related structure of commercial glassy carbons. Philos Mag 84:3159–3167CrossRef
25.
go back to reference Saxena RR, Bragg RH (1978) Electrical conduction in glassy carbon. J Non-Crystalline Solids 28:45–60CrossRef Saxena RR, Bragg RH (1978) Electrical conduction in glassy carbon. J Non-Crystalline Solids 28:45–60CrossRef
26.
go back to reference Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef
27.
go back to reference Polarz S, Smarsly B, Schattka JH (2002) Hierachical porous carbon structures from cellulose acetate fibers. Chem Mater 14:2940–2945CrossRef Polarz S, Smarsly B, Schattka JH (2002) Hierachical porous carbon structures from cellulose acetate fibers. Chem Mater 14:2940–2945CrossRef
28.
go back to reference Jaiswal M, Yi Xuan Lim CH, Bao Q, Toh CT, Loh KP, Özyilmaz B (2011) Controlled hydrogenation of graphene sheets and nanoribbons. ACS Nano 5:888–896CrossRef Jaiswal M, Yi Xuan Lim CH, Bao Q, Toh CT, Loh KP, Özyilmaz B (2011) Controlled hydrogenation of graphene sheets and nanoribbons. ACS Nano 5:888–896CrossRef
29.
go back to reference Ryu S, Han MY, Maultzsch J et al (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602CrossRef Ryu S, Han MY, Maultzsch J et al (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602CrossRef
30.
go back to reference Soukup L, Gregora I, Jastrabik L, Koňáková A (1992) Raman spectra and electrical conductivity of glassy carbon. Mater Sci Eng, B 11:355–357CrossRef Soukup L, Gregora I, Jastrabik L, Koňáková A (1992) Raman spectra and electrical conductivity of glassy carbon. Mater Sci Eng, B 11:355–357CrossRef
Metadata
Title
Glassy carbon nanofibers from electrospun cellulose nanofiber
Authors
Yingying Liu
Wang Qin
Qiaoying Wang
Ruilai Liu
Haiqing Liu
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8612-6

Other articles of this Issue 2/2015

Journal of Materials Science 2/2015 Go to the issue

Premium Partners