Skip to main content
Top

2014 | OriginalPaper | Chapter

Gold Thiolate Nanomolecules: Synthesis, Mass Spectrometry, and Characterization

Authors : Chanaka Kumara, Vijay Reddy Jupally, Amala Dass

Published in: Gold Clusters, Colloids and Nanoparticles I

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter summarizes the synthetic routes used for the following HS-CH2-CH2-Ph protected gold nanoclusters: Au25(SR)18, Au38(SR)24, Au40(SR)24, Au67(SR)35, Au103–105(SR)45–46, Au130(SR)50, and Au144(SR)60. The synthetic routes are based on either (a) direct synthetic route or (b) a core-size conversion route. The synthetic routes leading to the most stable clusters are discussed and the characterizational techniques used to study the products are described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Parker JF, Fields-Zinna CA, Murray RW (2010) The story of a monodisperse gold nanoparticle: Au25L18. Acc Chem Res 43(9):1289–1296CrossRef Parker JF, Fields-Zinna CA, Murray RW (2010) The story of a monodisperse gold nanoparticle: Au25L18. Acc Chem Res 43(9):1289–1296CrossRef
2.
go back to reference Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131(38):13604–13605CrossRef Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131(38):13604–13605CrossRef
3.
go back to reference Knoppe S, Boudon J, Dolamic I, Dass A, Bürgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83(13):5056–5061 Knoppe S, Boudon J, Dolamic I, Dass A, Bürgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83(13):5056–5061
4.
go back to reference Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117(2):504–517CrossRef Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117(2):504–517CrossRef
5.
go back to reference Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 7:801–802CrossRef Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 7:801–802CrossRef
6.
go back to reference Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8(5):428–433CrossRef Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8(5):428–433CrossRef
7.
go back to reference Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103(44):9394–9396CrossRef Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103(44):9394–9396CrossRef
8.
go back to reference Fields-Zinna CA, Sardar R, Beasley CA, Murray RW (2009) Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au144/146(SC11H22N(CH2CH3)3 +) x (S(CH2)5CH3) y ] x+. J Am Chem Soc 131(44):16266–16271CrossRef Fields-Zinna CA, Sardar R, Beasley CA, Murray RW (2009) Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au144/146(SC11H22N(CH2CH3)3 +) x (S(CH2)5CH3) y ] x+. J Am Chem Soc 131(44):16266–16271CrossRef
9.
go back to reference Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x (L) x . J Am Chem Soc 130(18):5940–5946CrossRef Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x (L) x . J Am Chem Soc 130(18):5940–5946CrossRef
10.
go back to reference Wang G, Guo R, Kalyuzhny G, Choi J-P, Murray RW (2006) NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J Phys Chem B 110(41):20282–20289CrossRef Wang G, Guo R, Kalyuzhny G, Choi J-P, Murray RW (2006) NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. J Phys Chem B 110(41):20282–20289CrossRef
11.
go back to reference Guo R, Georganopoulou D, Feldberg SW, Donkers R, Murray RW (2005) Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. Anal Chem 77(8):2662–2669CrossRef Guo R, Georganopoulou D, Feldberg SW, Donkers R, Murray RW (2005) Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. Anal Chem 77(8):2662–2669CrossRef
12.
go back to reference Choi J-P, Murray RW (2006) Electron self-exchange between Au140 +/0 nanoparticles is faster than that between Au38 +/0 in solid-state, mixed-valent films. J Am Chem Soc 128(32):10496–10502CrossRef Choi J-P, Murray RW (2006) Electron self-exchange between Au140 +/0 nanoparticles is faster than that between Au38 +/0 in solid-state, mixed-valent films. J Am Chem Soc 128(32):10496–10502CrossRef
13.
go back to reference Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755CrossRef Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130(12):3754–3755CrossRef
14.
go back to reference Fields-Zinna CA, Crowe MC, Dass A, Weaver JEF, Murray RW (2009) Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 25(13):7704–7710CrossRef Fields-Zinna CA, Crowe MC, Dass A, Weaver JEF, Murray RW (2009) Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 25(13):7704–7710CrossRef
16.
go back to reference Seker F, Malenfant PRL, Larsen M, Alizadeh A, Conway K, Kulkarni AM, Goddard G, Garaas R (2005) On-demand control of optoelectronic coupling in gold nanoparticle arrays. Adv Mater 17(16):1941–1945. doi:10.1002/adma.200400734 CrossRef Seker F, Malenfant PRL, Larsen M, Alizadeh A, Conway K, Kulkarni AM, Goddard G, Garaas R (2005) On-demand control of optoelectronic coupling in gold nanoparticle arrays. Adv Mater 17(16):1941–1945. doi:10.​1002/​adma.​200400734 CrossRef
17.
go back to reference Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef
18.
go back to reference Dingwen Z, Milton W, Alexandre GB, Jie S, Xiaodong L, Sumei H (2013) Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes. J Phys D: Appl Phys 46(2):024005CrossRef Dingwen Z, Milton W, Alexandre GB, Jie S, Xiaodong L, Sumei H (2013) Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes. J Phys D: Appl Phys 46(2):024005CrossRef
19.
go back to reference Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111(1):1–35CrossRef Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111(1):1–35CrossRef
20.
go back to reference Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983CrossRef Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983CrossRef
21.
go back to reference Zhou X, Xu W, Liu G, Panda D, Chen P (2009) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132(1):138–146CrossRef Zhou X, Xu W, Liu G, Panda D, Chen P (2009) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132(1):138–146CrossRef
22.
go back to reference Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712CrossRef Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712CrossRef
23.
go back to reference Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao J (2011) Multifunctional Ag@Fe2O3 yolk-shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J Mater Chem 21(41):16344–16348CrossRef Wei Z, Zhou Z, Yang M, Lin C, Zhao Z, Huang D, Chen Z, Gao J (2011) Multifunctional Ag@Fe2O3 yolk-shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J Mater Chem 21(41):16344–16348CrossRef
24.
go back to reference Negishi Y, Iwai T, Ide M (2010) Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem Commun 46(26):4713–4715CrossRef Negishi Y, Iwai T, Ide M (2010) Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem Commun 46(26):4713–4715CrossRef
25.
go back to reference Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910CrossRef Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910CrossRef
26.
go back to reference Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna G (2011) Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J Phys Chem Lett 2(21):2752–2758CrossRef Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna G (2011) Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J Phys Chem Lett 2(21):2752–2758CrossRef
27.
go back to reference García-Raya D, Madueño R, Blázquez M, Pineda T (2009) Electrochemistry of molecule-like Au25 nanoclusters protected by hexanethiolate. J Phys Chem C 113(20):8756–8761 García-Raya D, Madueño R, Blázquez M, Pineda T (2009) Electrochemistry of molecule-like Au25 nanoclusters protected by hexanethiolate. J Phys Chem C 113(20):8756–8761
28.
go back to reference Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129(51):16209–16215CrossRef Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129(51):16209–16215CrossRef
29.
go back to reference Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19(5):622–626CrossRef Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19(5):622–626CrossRef
30.
go back to reference Parker JF, Weaver JEF, McCallum F, Fields-Zinna CA, Murray RW (2010) Synthesis of monodisperse [Oct4N+][Au25(SR)18 −] nanoparticles, with some mechanistic observations. Langmuir 26(16):13650–13654CrossRef Parker JF, Weaver JEF, McCallum F, Fields-Zinna CA, Murray RW (2010) Synthesis of monodisperse [Oct4N+][Au25(SR)18 ] nanoparticles, with some mechanistic observations. Langmuir 26(16):13650–13654CrossRef
31.
go back to reference Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of A thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883–5885. doi:10.1021/ja801173r CrossRef Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of A thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130(18):5883–5885. doi:10.​1021/​ja801173r CrossRef
32.
go back to reference Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K (2010) Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys Chem Chem Phys 12(23):6219–6225CrossRef Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K (2010) Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys Chem Chem Phys 12(23):6219–6225CrossRef
33.
go back to reference Negishi Y, Munakata K, Ohgake W, Nobusada K (2012) Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J Phys Chem Lett 3(16):2209–2214CrossRef Negishi Y, Munakata K, Ohgake W, Nobusada K (2012) Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J Phys Chem Lett 3(16):2209–2214CrossRef
34.
go back to reference Qian H, D-e J, Li G, Gayathri C, Das A, Gil RR, Jin R (2012) Monoplatinum doping of gold nanoclusters and catalytic application. J Am Chem Soc 134(39):16159–16162CrossRef Qian H, D-e J, Li G, Gayathri C, Das A, Gil RR, Jin R (2012) Monoplatinum doping of gold nanoclusters and catalytic application. J Am Chem Soc 134(39):16159–16162CrossRef
35.
go back to reference D-e J, Dai S (2009) From superatomic Au25(SR)18 − to superatomic M@Au24(SR)18 q core−shell clusters. Inorg Chem 48(7):2720–2722CrossRef D-e J, Dai S (2009) From superatomic Au25(SR)18 to superatomic M@Au24(SR)18 q core−shell clusters. Inorg Chem 48(7):2720–2722CrossRef
36.
go back to reference Walter M, Moseler M (2009) Ligand-protected gold alloy clusters: doping the superatom. J Phys Chem C 113(36):15834–15837CrossRef Walter M, Moseler M (2009) Ligand-protected gold alloy clusters: doping the superatom. J Phys Chem C 113(36):15834–15837CrossRef
37.
go back to reference Guidez EB, Mäkinen V, Häkkinen H, Aikens CM (2012) Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25–n Ag n (SH)18 – (n = 1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J Phys Chem C 116(38):20617–20624CrossRef Guidez EB, Mäkinen V, Häkkinen H, Aikens CM (2012) Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25–n Ag n (SH)18 (n = 1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J Phys Chem C 116(38):20617–20624CrossRef
38.
go back to reference Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R (2013) A quantum alloy: the ligand-protected Au25–x Ag x (SR)18 cluster. J Phys Chem C 117(15):7914–7923CrossRef Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R (2013) A quantum alloy: the ligand-protected Au25–x Ag x (SR)18 cluster. J Phys Chem C 117(15):7914–7923CrossRef
39.
go back to reference Copley RCB, Mingos DMP (1996) Synthesis and characterization of the centred icosahedral cluster series [Au9MIB4Cl4(PMePh2)8][C2B9H12], where MIB=Au, Ag or Cu. J Chem Soc Dalton Trans 4:491–500CrossRef Copley RCB, Mingos DMP (1996) Synthesis and characterization of the centred icosahedral cluster series [Au9MIB4Cl4(PMePh2)8][C2B9H12], where MIB=Au, Ag or Cu. J Chem Soc Dalton Trans 4:491–500CrossRef
41.
go back to reference Kumara C, Aikens CM, Dass A (2014) X-ray crystal structure and theoretical analysis of Au25–x Ag x (SCH2CH2Ph)18– Alloy. The J Phys Chem Lett 461–466. doi:10.1021/jz402441d Kumara C, Aikens CM, Dass A (2014) X-ray crystal structure and theoretical analysis of Au25–x Ag x (SCH2CH2Ph)18– Alloy. The J Phys Chem Lett 461–466. doi:10.1021/jz402441d
42.
go back to reference Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30CrossRef Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30CrossRef
43.
go back to reference Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au:SR cluster compound. J Phys Chem B 105(37):8785–8796CrossRef Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au:SR cluster compound. J Phys Chem B 105(37):8785–8796CrossRef
44.
go back to reference Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130(27):8608–8610CrossRef Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130(27):8608–8610CrossRef
45.
go back to reference Lopez-Acevedo O, Akola J, Whetten RL, Grönbeck H, Häkkinen H (2009) Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J Phys Chem C 113(13):5035–5038 Lopez-Acevedo O, Akola J, Whetten RL, Grönbeck H, Häkkinen H (2009) Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J Phys Chem C 113(13):5035–5038
46.
go back to reference Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9(12):4083–4087CrossRef Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9(12):4083–4087CrossRef
47.
go back to reference Kumara C, Dass A (2011) (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 3(8):3064–3067CrossRef Kumara C, Dass A (2011) (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 3(8):3064–3067CrossRef
48.
go back to reference Malola S, Häkkinen H (2011) Electronic structure and bonding of icosahedral core–shell gold–silver nanoalloy clusters Au144–x Ag x (SR)60. J Phys Chem Lett 2(18):2316–2321 Malola S, Häkkinen H (2011) Electronic structure and bonding of icosahedral core–shell gold–silver nanoalloy clusters Au144–x Ag x (SR)60. J Phys Chem Lett 2(18):2316–2321
49.
go back to reference Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131(33):11666–11667CrossRef Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131(33):11666–11667CrossRef
50.
go back to reference Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433CrossRef Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433CrossRef
51.
go back to reference Dass A, Nimmala PR, Jupally VR, Kothalawala N (2013) Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. Nanoscale 5(24):12082–12085CrossRef Dass A, Nimmala PR, Jupally VR, Kothalawala N (2013) Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. Nanoscale 5(24):12082–12085CrossRef
52.
go back to reference Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133(24):9175–9177CrossRef Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133(24):9175–9177CrossRef
53.
go back to reference Nimmala PR, Jupally VR, Dass A (2014) Core size conversion: route for exclusive synthesis of Au38 or Au40 nanomolecules. Langmuir 30:2490–2497 Nimmala PR, Jupally VR, Dass A (2014) Core size conversion: route for exclusive synthesis of Au38 or Au40 nanomolecules. Langmuir 30:2490–2497
54.
go back to reference Jupally VR, Dass A (2013) Synthesis of Au130(SR)50 and Au130-x Ag x (SR)50 nanomolecules through core size conversion of larger metal clusters. Submitted for publication Jupally VR, Dass A (2013) Synthesis of Au130(SR)50 and Au130-x Ag x (SR)50 nanomolecules through core size conversion of larger metal clusters. Submitted for publication
56.
go back to reference Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A 113(16):4281–4284CrossRef Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A 113(16):4281–4284CrossRef
57.
go back to reference Meng X, Liu Z, Zhu M, Jin R (2012) Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun (n = 20, 24, 39, 40). Nanoscale Res Lett 7:277 Meng X, Liu Z, Zhu M, Jin R (2012) Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun (n = 20, 24, 39, 40). Nanoscale Res Lett 7:277
58.
go back to reference Edinger K, Goelzhaeuser A, Demota K, Woell C, Grunze M (1993) Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology. Langmuir 9(1):4–8CrossRef Edinger K, Goelzhaeuser A, Demota K, Woell C, Grunze M (1993) Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology. Langmuir 9(1):4–8CrossRef
59.
go back to reference Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury JT, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa Alkanethiolate-protected au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119(39):9279–9280CrossRef Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury JT, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa Alkanethiolate-protected au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119(39):9279–9280CrossRef
60.
go back to reference Dass A (2011) Faradaurate nanomolecules: a superstable plasmonic 76.3 kDa cluster. J Am Chem Soc 133(48):19259–19261CrossRef Dass A (2011) Faradaurate nanomolecules: a superstable plasmonic 76.3 kDa cluster. J Am Chem Soc 133(48):19259–19261CrossRef
61.
go back to reference Negishi Y, Sakamoto C, Ohyama T, Tsukuda T (2012) Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters. J Phys Chem Lett 3(12):1624–1628CrossRef Negishi Y, Sakamoto C, Ohyama T, Tsukuda T (2012) Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters. J Phys Chem Lett 3(12):1624–1628CrossRef
62.
go back to reference Dass A, Nimmala PR, Jupally VR, Kothalawala N (2013) Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. Nanoscale 5:12082–12085 Dass A, Nimmala PR, Jupally VR, Kothalawala N (2013) Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. Nanoscale 5:12082–12085
63.
go back to reference Knoppe S, Boudon J, Dolamic I, Dass A, Burgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83(13):5056–5061CrossRef Knoppe S, Boudon J, Dolamic I, Dass A, Burgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83(13):5056–5061CrossRef
64.
go back to reference Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132(24):8280–8281CrossRef Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132(24):8280–8281CrossRef
65.
go back to reference Dolamic I, Knoppe S, Dass A, Bürgi T (2012) First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat Commun 3:798CrossRef Dolamic I, Knoppe S, Dass A, Bürgi T (2012) First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat Commun 3:798CrossRef
66.
go back to reference Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132(23):8210–8218CrossRef Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132(23):8210–8218CrossRef
67.
go back to reference Toikkanen O, Carlsson S, Dass A, Rönnholm G, Kalkkinen N, Quinn BM (2009) Solvent-dependent stability of monolayer-protected Au38 clusters. J Phys Chem Lett 1(1):32–37CrossRef Toikkanen O, Carlsson S, Dass A, Rönnholm G, Kalkkinen N, Quinn BM (2009) Solvent-dependent stability of monolayer-protected Au38 clusters. J Phys Chem Lett 1(1):32–37CrossRef
68.
go back to reference Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Bürgi T (2010) Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J Am Chem Soc 132(47):16783–16789CrossRef Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Bürgi T (2010) Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J Am Chem Soc 132(47):16783–16789CrossRef
69.
go back to reference Kumara C, Dass A (2012) AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 4(14):4084–4086CrossRef Kumara C, Dass A (2012) AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 4(14):4084–4086CrossRef
70.
go back to reference Qian H, Zhu Y, Jin R (2012) Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci 109(3):696–700CrossRef Qian H, Zhu Y, Jin R (2012) Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci 109(3):696–700CrossRef
71.
go back to reference Lordeiro RA, Guimarães FF, Belchior JC, Johnston RL (2003) Determination of main structural compositions of nanoalloy clusters of Cu x Au y (x + y ≤ 30) using a genetic algorithm approach. Int J Quantum Chem 95(2):112–125. doi:10.1002/qua.10660 CrossRef Lordeiro RA, Guimarães FF, Belchior JC, Johnston RL (2003) Determination of main structural compositions of nanoalloy clusters of Cu x Au y (x + y ≤ 30) using a genetic algorithm approach. Int J Quantum Chem 95(2):112–125. doi:10.​1002/​qua.​10660 CrossRef
72.
go back to reference Negishi Y, Igarashi K, Munakata K, Ohgake W, Nobusada K (2012) Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem Commun (Cambridge, UK) 48(5):660–662CrossRef Negishi Y, Igarashi K, Munakata K, Ohgake W, Nobusada K (2012) Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem Commun (Cambridge, UK) 48(5):660–662CrossRef
Metadata
Title
Gold Thiolate Nanomolecules: Synthesis, Mass Spectrometry, and Characterization
Authors
Chanaka Kumara
Vijay Reddy Jupally
Amala Dass
Copyright Year
2014
DOI
https://doi.org/10.1007/430_2014_142

Premium Partners