Skip to main content
Top
Published in: Journal of Electronic Materials 9/2021

12-07-2021 | Topical Collection: Carbon-Based Materials for Energy Storage

Graphene for Thermal Storage Applications: Characterization, Simulation and Modelling

Authors: Dhinakaran Veeman, M. Swapna Sai, V Rajkumar, M. Ravichandran, S. Manivannan

Published in: Journal of Electronic Materials | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, interest in the thermal properties of graphene constituents has seen rapid growth in the fields of science and engineering. The removal of heat in the continuous processes in the electronics industry has had major issues in thermal transmission in lower-dimensional assemblies. It has also shown fascinating topographies as the carbon allotropes and their derivative compounds expel heat. Numerous research articles reported within the past 15 years have demonstrated enhanced electron flexibility, exceptional thermal conductivity and mechanical behaviour, as well as excellent optical properties of graphene as a single atomic layer. This review article tries to provide a detailed summary of the heat exchange properties of graphene structures and graphene-based materials such as nanoribbons with few-layered graphene. Thermal and energy storage management systems have played a major role in the increase in marketable products in recent times. The purpose of this review is to summarize the current research on thermal properties with regard to the management and energy storage of graphene materials, focusing on characteristic properties, industrialization, modelling and simulation, and their applications in specific thermal storage systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference H. Huang, Y. Xu, X. Zou, J. Wu, and W. Duan, Phys. Rev. B 87, 205415 (2013).CrossRef H. Huang, Y. Xu, X. Zou, J. Wu, and W. Duan, Phys. Rev. B 87, 205415 (2013).CrossRef
3.
go back to reference H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, and A.A. Balandin, Nano Scale 8, 14608 (2016). H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, and A.A. Balandin, Nano Scale 8, 14608 (2016).
6.
8.
9.
go back to reference W. Choi, and J.-W. Lee eds., Graphene: Synthesis and Applications. (Boca Raton: CRC Press, 2011). W. Choi, and J.-W. Lee eds., Graphene: Synthesis and Applications. (Boca Raton: CRC Press, 2011).
10.
11.
go back to reference S.K. Singh, S. Goverapet -Srinivasan, and M. Neek-Amal, Phys. Rev. B 87, 104114 (2013).CrossRef S.K. Singh, S. Goverapet -Srinivasan, and M. Neek-Amal, Phys. Rev. B 87, 104114 (2013).CrossRef
12.
go back to reference S.R. Shin, Y.-C. Li, H.L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y.S. Zhang, A. Tamayol, and A. Khademhosseini, Adv. Drug Deliv. Rev. 105, 255 (2016).CrossRef S.R. Shin, Y.-C. Li, H.L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y.S. Zhang, A. Tamayol, and A. Khademhosseini, Adv. Drug Deliv. Rev. 105, 255 (2016).CrossRef
13.
go back to reference A. Savchenko, V. Cherkas, C. Liu, G.B. Braun, A. Kleschevnikov, Y.I. Miller, and E. Molokanova, Sci. Adv. 4, eaat0351 (2018).CrossRef A. Savchenko, V. Cherkas, C. Liu, G.B. Braun, A. Kleschevnikov, Y.I. Miller, and E. Molokanova, Sci. Adv. 4, eaat0351 (2018).CrossRef
14.
go back to reference X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev. 43, 7067 (2014).CrossRef X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev. 43, 7067 (2014).CrossRef
15.
go back to reference Y.-T. Li, Y. Tian, M.-X. Sun, T. Tu, Z.-Y. Ju, G.-Y. Gou, Y.-F. Zhao, Z.Y. Yan, F. Wu, D. Xie, H. Tian, Adv. Funct. Mater. 30, 1903888 (2020).CrossRef Y.-T. Li, Y. Tian, M.-X. Sun, T. Tu, Z.-Y. Ju, G.-Y. Gou, Y.-F. Zhao, Z.Y. Yan, F. Wu, D. Xie, H. Tian, Adv. Funct. Mater. 30, 1903888 (2020).CrossRef
16.
go back to reference R. Kumar, R. Singh, D. Hui, L. Feo, and F. Fraternali, Compos. Part B Eng. 134, 193 (2018).CrossRef R. Kumar, R. Singh, D. Hui, L. Feo, and F. Fraternali, Compos. Part B Eng. 134, 193 (2018).CrossRef
17.
go back to reference C. Wu, L. Xia, P. Han, Xu. Mengchi, B. Fang, J. Wang, J. Chang, and Y. Xiao, Carbon 93, 116 (2015).CrossRef C. Wu, L. Xia, P. Han, Xu. Mengchi, B. Fang, J. Wang, J. Chang, and Y. Xiao, Carbon 93, 116 (2015).CrossRef
18.
20.
go back to reference S. Aznar-Cervantes, A. Pagán, J.G. Martínez, A. Bernabeu-Esclapez, T.F. Otero, L. Meseguer-Olmo, J.I. Paredes, and J.L. Cenis, Mater. Sci. Eng. C 79, 315 (2017).CrossRef S. Aznar-Cervantes, A. Pagán, J.G. Martínez, A. Bernabeu-Esclapez, T.F. Otero, L. Meseguer-Olmo, J.I. Paredes, and J.L. Cenis, Mater. Sci. Eng. C 79, 315 (2017).CrossRef
21.
22.
go back to reference H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D.L. Nika, K.S. Novoselov, and A.A. Balandin, Nano Lett. 14, 5155 (2014).CrossRef H. Malekpour, K.-H. Chang, J.-C. Chen, C.-Y. Lu, D.L. Nika, K.S. Novoselov, and A.A. Balandin, Nano Lett. 14, 5155 (2014).CrossRef
23.
go back to reference D.S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C. Ning Lau, Appl. Phys. Lett. 92, 151911 (2008).CrossRef D.S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C. Ning Lau, Appl. Phys. Lett. 92, 151911 (2008).CrossRef
24.
go back to reference C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A.K. Geim, ACS Nano 4, 1889 (2010).CrossRef C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A.K. Geim, ACS Nano 4, 1889 (2010).CrossRef
25.
go back to reference D.L. Nika, S. Ghosh, E.P. Pokatilov, and A.A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).CrossRef D.L. Nika, S. Ghosh, E.P. Pokatilov, and A.A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).CrossRef
26.
28.
go back to reference B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, and Y. Hu, Chem. Eng. J. 237, 411 (2014).CrossRef B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, and Y. Hu, Chem. Eng. J. 237, 411 (2014).CrossRef
29.
go back to reference L. Burk, M. Gliem, F. Lais, F. Nutz, M. Retsch, and R. Mülhaupt, Polymer 10, 1088 (2018).CrossRef L. Burk, M. Gliem, F. Lais, F. Nutz, M. Retsch, and R. Mülhaupt, Polymer 10, 1088 (2018).CrossRef
30.
go back to reference X. Wang, W. Xing, X. Feng, Yu. Bin, Lu. Hongdian, L. Song, and Hu. Yuan, Chem. Eng. J. 250, 214 (2014).CrossRef X. Wang, W. Xing, X. Feng, Yu. Bin, Lu. Hongdian, L. Song, and Hu. Yuan, Chem. Eng. J. 250, 214 (2014).CrossRef
31.
go back to reference X. Mi, L. Zhong, F. Wei, L. Zeng, J. Zhang, D. Zhang, and Xu. Tiwen, Polym. Test. 76, 473 (2019).CrossRef X. Mi, L. Zhong, F. Wei, L. Zeng, J. Zhang, D. Zhang, and Xu. Tiwen, Polym. Test. 76, 473 (2019).CrossRef
32.
go back to reference X. Ye, P. Gong, J. Wang, H. Wang, S. Ren, and S. Yang, Compos. Part A Appl. Sci. Manuf. 75, 96 (2015).CrossRef X. Ye, P. Gong, J. Wang, H. Wang, S. Ren, and S. Yang, Compos. Part A Appl. Sci. Manuf. 75, 96 (2015).CrossRef
33.
34.
go back to reference R. Wang, Wu. Lixin, D. Zhuo, J. Zhang, and Y. Zheng, Ind. Eng. Chem. Res. 57, 10967 (2018).CrossRef R. Wang, Wu. Lixin, D. Zhuo, J. Zhang, and Y. Zheng, Ind. Eng. Chem. Res. 57, 10967 (2018).CrossRef
35.
go back to reference J. Yang, Y. Huang, Y. Lv, P. Zhao, Qi. Yang, and G. Li, J. Mater. Chem. A 1, 11184 (2013).CrossRef J. Yang, Y. Huang, Y. Lv, P. Zhao, Qi. Yang, and G. Li, J. Mater. Chem. A 1, 11184 (2013).CrossRef
36.
go back to reference J. Yang, Yu. Peng, L.-S. Tang, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, and W. Yang, Nanoscale 9, 17704 (2017).CrossRef J. Yang, Yu. Peng, L.-S. Tang, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, and W. Yang, Nanoscale 9, 17704 (2017).CrossRef
37.
go back to reference C. Bao, L. Song, C.A. Wilkie, B. Yuan, Y. Guo, Hu. Yuan, and X. Gong, J. Mater. Chem. 22, 16399 (2012).CrossRef C. Bao, L. Song, C.A. Wilkie, B. Yuan, Y. Guo, Hu. Yuan, and X. Gong, J. Mater. Chem. 22, 16399 (2012).CrossRef
38.
go back to reference D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, Lu. Wei, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, Lu. Wei, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRef
39.
40.
go back to reference X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, and J. Gu, Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020).CrossRef X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, and J. Gu, Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020).CrossRef
41.
go back to reference Y. Guo, K. Ruan, X. Shi, X. Yang, and J. Gu, Compos. Sci. Technol. 193, 108134 (2020).CrossRef Y. Guo, K. Ruan, X. Shi, X. Yang, and J. Gu, Compos. Sci. Technol. 193, 108134 (2020).CrossRef
42.
go back to reference M. Li, Z. Ali, X. Wei, L. Li, G. Song, X. Hou, H. Do, J.C. Greer, Z. Pan, C.T. Lin, N. Jiang, Compos. Part B Eng. 208, 108599 (2020).CrossRef M. Li, Z. Ali, X. Wei, L. Li, G. Song, X. Hou, H. Do, J.C. Greer, Z. Pan, C.T. Lin, N. Jiang, Compos. Part B Eng. 208, 108599 (2020).CrossRef
43.
go back to reference Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, and Z. Guo, ACS Appl. Mater. Interfaces 11, 25465 (2019).CrossRef Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, and Z. Guo, ACS Appl. Mater. Interfaces 11, 25465 (2019).CrossRef
44.
go back to reference Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, and Z. Guo, J. Mater Chem. C 7, 7035 (2019).CrossRef Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, and Z. Guo, J. Mater Chem. C 7, 7035 (2019).CrossRef
45.
go back to reference Y. Liu, Lu. Jiangyin, and Y. Cui, Car. Res. Con. 3, 29 (2020). Y. Liu, Lu. Jiangyin, and Y. Cui, Car. Res. Con. 3, 29 (2020).
48.
go back to reference S. Sayyar, D.L. Officer, and G.G. Wallace, J. Mater. Chem. B 5, 3462 (2017).CrossRef S. Sayyar, D.L. Officer, and G.G. Wallace, J. Mater. Chem. B 5, 3462 (2017).CrossRef
50.
51.
go back to reference K.M. Yocham, C. Scott, K. Fujimoto, R. Brown, E. Tanasse, J.T. Oxford, T.J. Lujan, and D. Estrada, Adv. Eng. Mater. 20, 1800166 (2018).CrossRef K.M. Yocham, C. Scott, K. Fujimoto, R. Brown, E. Tanasse, J.T. Oxford, T.J. Lujan, and D. Estrada, Adv. Eng. Mater. 20, 1800166 (2018).CrossRef
52.
go back to reference F. Yavari, Z. Chen, A.V. Thomas, W. Ren, H.-M. Cheng, and N. Koratkar, Sci. Rep. 1, 1 (2011).CrossRef F. Yavari, Z. Chen, A.V. Thomas, W. Ren, H.-M. Cheng, and N. Koratkar, Sci. Rep. 1, 1 (2011).CrossRef
53.
go back to reference S. Yang, L. Chen, Mu. Lei, and P.-C. Ma, J. Colloid Interface Sci. 430, 337 (2014).CrossRef S. Yang, L. Chen, Mu. Lei, and P.-C. Ma, J. Colloid Interface Sci. 430, 337 (2014).CrossRef
54.
go back to reference E. Krueger, A. Nicole Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K.M. Yocham, K.D. Cantley, and D. Estrada, ACS Biomater. Sci. Eng. 2, 1234 (2016).CrossRef E. Krueger, A. Nicole Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K.M. Yocham, K.D. Cantley, and D. Estrada, ACS Biomater. Sci. Eng. 2, 1234 (2016).CrossRef
56.
go back to reference J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).CrossRef J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).CrossRef
57.
go back to reference L. Sheng, T. Wei, Y. Liang, L. Jiang, Qu. Liangti, and Z. Fan, Carbon 120, 17 (2017).CrossRef L. Sheng, T. Wei, Y. Liang, L. Jiang, Qu. Liangti, and Z. Fan, Carbon 120, 17 (2017).CrossRef
58.
59.
go back to reference N.-J. Song, C.-M. Chen, Lu. Chunxiang, Z. Liu, Q.-Q. Kong, and R. Cai, J. Mater. Chem. A 2, 16563 (2014).CrossRef N.-J. Song, C.-M. Chen, Lu. Chunxiang, Z. Liu, Q.-Q. Kong, and R. Cai, J. Mater. Chem. A 2, 16563 (2014).CrossRef
60.
go back to reference N. Wang, S. Chen, A. Nkansah, C.C. Darmawan, L. Ye, and J. Liu. Highly thermally conductive and light weight copper/graphene film laminated composites for cooling applications, in 2018 19th (ICEPT) (IEEE, 2018), p. 1588. N. Wang, S. Chen, A. Nkansah, C.C. Darmawan, L. Ye, and J. Liu. Highly thermally conductive and light weight copper/graphene film laminated composites for cooling applications, in 2018 19th (ICEPT) (IEEE, 2018), p. 1588.
61.
go back to reference G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Adv. Mater. 26, 4521 (2014).CrossRef G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, and J. Lian, Adv. Mater. 26, 4521 (2014).CrossRef
62.
63.
go back to reference C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren, and Y. Zhu, Adv. Funct. Mater. 27, 1700240 (2017).CrossRef C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren, and Y. Zhu, Adv. Funct. Mater. 27, 1700240 (2017).CrossRef
64.
65.
go back to reference Y. Hong, C. Zhu, M. Ju, J. Zhang, and X.C. Zeng, Phys. Chem. Chem. Phys. 19, 6554 (2017).CrossRef Y. Hong, C. Zhu, M. Ju, J. Zhang, and X.C. Zeng, Phys. Chem. Chem. Phys. 19, 6554 (2017).CrossRef
66.
go back to reference A. Verma, R. Kumar, and A. Parashar, Phys. Chem. Chem. Phys. 21, 6229 (2019).CrossRef A. Verma, R. Kumar, and A. Parashar, Phys. Chem. Chem. Phys. 21, 6229 (2019).CrossRef
67.
go back to reference H.S. Ryu, H.-S. Kim, D. Kim, S.J. Lee, W. Choi, S.J. Kwon, J.-H. Han, and E.-S. Cho, Micromachines 11, 821 (2020).CrossRef H.S. Ryu, H.-S. Kim, D. Kim, S.J. Lee, W. Choi, S.J. Kwon, J.-H. Han, and E.-S. Cho, Micromachines 11, 821 (2020).CrossRef
68.
go back to reference D.N. Luta, An energy management system for a hybrid reversible fuel cell/supercapacitor in a 100% renewable power system. PhD diss., Cape Peninsula University of Technology (2019). D.N. Luta, An energy management system for a hybrid reversible fuel cell/supercapacitor in a 100% renewable power system. PhD diss., Cape Peninsula University of Technology (2019).
69.
go back to reference A.G. Marrani, A. Motta, R. Schrebler, R. Zanoni, and E.A. Dalchiele, Electrochim. Acta 304, 231 (2019).CrossRef A.G. Marrani, A. Motta, R. Schrebler, R. Zanoni, and E.A. Dalchiele, Electrochim. Acta 304, 231 (2019).CrossRef
70.
71.
go back to reference R.-C. Zhang, D. Sun, Lu. Ai, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti, ACS Appl. Mater. Interfaces 8, 13567 (2016).CrossRef R.-C. Zhang, D. Sun, Lu. Ai, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti, ACS Appl. Mater. Interfaces 8, 13567 (2016).CrossRef
72.
go back to reference R.-C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti. Polymer Nanocomposites with Enhanced Thermal Transport Performance (2016). R.-C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti. Polymer Nanocomposites with Enhanced Thermal Transport Performance (2016).
73.
go back to reference R.R. Guimaraes, J.M. Gonçalves, O. Björneholm, C. Moyses Araujo, A. N. de Brito, and K. Araki. Single-atom electrocatalysts for water splitting, in Meth. for Electrocatalysis (Springer, Cham, 2020), pp. 67–111. R.R. Guimaraes, J.M. Gonçalves, O. Björneholm, C. Moyses Araujo, A. N. de Brito, and K. Araki. Single-atom electrocatalysts for water splitting, in Meth. for Electrocatalysis (Springer, Cham, 2020), pp. 67–111.
74.
go back to reference A.G. Fedorov, C. Green, and Y. Joshi. Devices including composite thermal capacitors. U.S. Patent 8,710,625, issued April 29, 2014. A.G. Fedorov, C. Green, and Y. Joshi. Devices including composite thermal capacitors. U.S. Patent 8,710,625, issued April 29, 2014.
75.
go back to reference S. Ghosh, V. Gueskine, M. Berggren, and I.V. Zozoulenko, J. Phys. Chem. C 123, 15467 (2019).CrossRef S. Ghosh, V. Gueskine, M. Berggren, and I.V. Zozoulenko, J. Phys. Chem. C 123, 15467 (2019).CrossRef
76.
go back to reference D. Han, X. Wang, W. Ding, Y. Chen, J. Zhang, G. Xin, and L. Cheng, Nanotechnolgy 30, 075403 (2018).CrossRef D. Han, X. Wang, W. Ding, Y. Chen, J. Zhang, G. Xin, and L. Cheng, Nanotechnolgy 30, 075403 (2018).CrossRef
78.
go back to reference J. Zhang, Y. Hong, M. Liu, Y. Yue, Q. Xiong, and G. Lorenzini, Int. J. Heat Mass Transf. 104, 871 (2017).CrossRef J. Zhang, Y. Hong, M. Liu, Y. Yue, Q. Xiong, and G. Lorenzini, Int. J. Heat Mass Transf. 104, 871 (2017).CrossRef
79.
go back to reference B.-Y. Cao, J.-H. Zou, G.-J. Hu, and G.-X. Cao, Appl. Phys. Lett. 112, 041603 (2018).CrossRef B.-Y. Cao, J.-H. Zou, G.-J. Hu, and G.-X. Cao, Appl. Phys. Lett. 112, 041603 (2018).CrossRef
80.
go back to reference B. Mortazavi, Y. Rémond, S. Ahzi, and V. Toniazzo, Comput. Mater. Sci. 53, 298 (2012).CrossRef B. Mortazavi, Y. Rémond, S. Ahzi, and V. Toniazzo, Comput. Mater. Sci. 53, 298 (2012).CrossRef
81.
go back to reference A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Nat. Nanotechnol. 12, 1083 (2017).CrossRef A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Nat. Nanotechnol. 12, 1083 (2017).CrossRef
82.
go back to reference Y. Qian, X. Zhao, Q. Han, W. Chen, H. Li, and W. Yuan, Nat. Commun. 9, 1 (2018).CrossRef Y. Qian, X. Zhao, Q. Han, W. Chen, H. Li, and W. Yuan, Nat. Commun. 9, 1 (2018).CrossRef
83.
go back to reference A. Chih, A. Ansón-Casaos, and J.A. Puértolas, Tribol. Int. 116, 295 (2017).CrossRef A. Chih, A. Ansón-Casaos, and J.A. Puértolas, Tribol. Int. 116, 295 (2017).CrossRef
84.
go back to reference A. Amiri, G. Ahmadi, M. Shanbedi, M. Savari, S.N. Kazi, and B.T. Chew, Sci. Rep. 5, 17503 (2015).CrossRef A. Amiri, G. Ahmadi, M. Shanbedi, M. Savari, S.N. Kazi, and B.T. Chew, Sci. Rep. 5, 17503 (2015).CrossRef
85.
go back to reference S. Chatterjee, R. Carter, L. Oakes, W.R. Erwin, R. Bardhan, and C.L. Pint, J. Phys. Chem. C 118, 10893 (2014).CrossRef S. Chatterjee, R. Carter, L. Oakes, W.R. Erwin, R. Bardhan, and C.L. Pint, J. Phys. Chem. C 118, 10893 (2014).CrossRef
86.
go back to reference Y. Qu, J. Wu, Y. Yang, Y. Zhang, Y. Liang, H. El Dirani, R. Crochemore, P. Demongodinc, C. Sciancalepore, C. Grillet, C. Monat, Adv. Opt. Mater. 8, 1048 (2020).CrossRef Y. Qu, J. Wu, Y. Yang, Y. Zhang, Y. Liang, H. El Dirani, R. Crochemore, P. Demongodinc, C. Sciancalepore, C. Grillet, C. Monat, Adv. Opt. Mater. 8, 1048 (2020).CrossRef
87.
88.
go back to reference P.-C. Lin, S. Lin, P.C. Wang, and R. Sridhar, Biotechnol. Adv. 32, 711 (2014).CrossRef P.-C. Lin, S. Lin, P.C. Wang, and R. Sridhar, Biotechnol. Adv. 32, 711 (2014).CrossRef
89.
go back to reference K. Qiao, S. Guo, Y. Zheng, Xu. Xuetao, H. Meng, J. Peng, Z. Fang, and Y. Xie, Mater. Sci. Eng. C 93, 853 (2018).CrossRef K. Qiao, S. Guo, Y. Zheng, Xu. Xuetao, H. Meng, J. Peng, Z. Fang, and Y. Xie, Mater. Sci. Eng. C 93, 853 (2018).CrossRef
90.
go back to reference M.-l Zhao, X.-q Liu, Ye. Cao, X.-F. Li, D.-J. Li, X.-L. Sun, Gu. Han-qing, and R.-X. Wan, Sci. Rep. 6, 37112 (2016).CrossRef M.-l Zhao, X.-q Liu, Ye. Cao, X.-F. Li, D.-J. Li, X.-L. Sun, Gu. Han-qing, and R.-X. Wan, Sci. Rep. 6, 37112 (2016).CrossRef
91.
go back to reference J. Xu, T. Cui, T. Hirtz, Y. Qiao, X. Li, F. Zhong, X. Han, Yi. Yang, S. Zhang, and T.-L. Ren, ACS Appl. Mater. Interfaces 12, 18375 (2020).CrossRef J. Xu, T. Cui, T. Hirtz, Y. Qiao, X. Li, F. Zhong, X. Han, Yi. Yang, S. Zhang, and T.-L. Ren, ACS Appl. Mater. Interfaces 12, 18375 (2020).CrossRef
93.
go back to reference S. Herekar, Systems, methods, and kits to reduce surface heating during tissue treatment. U.S. Patent Application 15/896,886, filed June 28, 2018. S. Herekar, Systems, methods, and kits to reduce surface heating during tissue treatment. U.S. Patent Application 15/896,886, filed June 28, 2018.
94.
go back to reference H. Zhao, R. Ding, X. Zhao, Y. Li, Qu. Liangliang, H. Pei, L. Yildirimer, Wu. Zhengwei, and W. Zhang, Drug Discov. Today 22, 1302 (2017).CrossRef H. Zhao, R. Ding, X. Zhao, Y. Li, Qu. Liangliang, H. Pei, L. Yildirimer, Wu. Zhengwei, and W. Zhang, Drug Discov. Today 22, 1302 (2017).CrossRef
95.
go back to reference T. Das, B.K. Sharma, A.K. Katiyar, and J.-H. Ahn, J. Semicond. 39, 011007 (2018).CrossRef T. Das, B.K. Sharma, A.K. Katiyar, and J.-H. Ahn, J. Semicond. 39, 011007 (2018).CrossRef
96.
go back to reference M. Ioniţă, G.M. Vlăsceanu, A.A. Watzlawek, S.I. Voicu, J.S. Burns, and H. Iovu, Compos. Part B Eng. 121, 34 (2017).CrossRef M. Ioniţă, G.M. Vlăsceanu, A.A. Watzlawek, S.I. Voicu, J.S. Burns, and H. Iovu, Compos. Part B Eng. 121, 34 (2017).CrossRef
97.
go back to reference T. Kitao, M.W.A. MacLean, K. Nakata, M. Takayanagi, M. Nagaoka, and T. Uemura, J. Am. Chem. Soc. 142, 5509 (2020).CrossRef T. Kitao, M.W.A. MacLean, K. Nakata, M. Takayanagi, M. Nagaoka, and T. Uemura, J. Am. Chem. Soc. 142, 5509 (2020).CrossRef
98.
go back to reference D.Q. McNerny, B. Viswanath, D. Copic, F.R. Laye, C. Prohoda, A.C. Brieland-Shoultz, E.S. Polsen, N.T. Dee, V.S. Veerasamy, and A. John Hart, Sci. Rep. 4, 1 (2014). D.Q. McNerny, B. Viswanath, D. Copic, F.R. Laye, C. Prohoda, A.C. Brieland-Shoultz, E.S. Polsen, N.T. Dee, V.S. Veerasamy, and A. John Hart, Sci. Rep. 4, 1 (2014).
99.
go back to reference A. Nourbakhsh, M. Heyns, and S. De Gendt. Graphene based field effect transistor. U.S. Patent 9,184,270, issued November 10, 2015. A. Nourbakhsh, M. Heyns, and S. De Gendt. Graphene based field effect transistor. U.S. Patent 9,184,270, issued November 10, 2015.
100.
go back to reference S. Wang, L. Gai, J. Zhou, H. Jiang, Y. Sun, and H. Zhang, J. Phys. Chem. C 119, 3881 (2015).CrossRef S. Wang, L. Gai, J. Zhou, H. Jiang, Y. Sun, and H. Zhang, J. Phys. Chem. C 119, 3881 (2015).CrossRef
101.
go back to reference Y. Yang, L.-I. Huang, Y. Fukuyama, F.-H. Liu, M.A. Real, P. Barbara, C.-T. Liang, D.B. Newell, and R.E. Elmquist, Small 11, 90 (2015).CrossRef Y. Yang, L.-I. Huang, Y. Fukuyama, F.-H. Liu, M.A. Real, P. Barbara, C.-T. Liang, D.B. Newell, and R.E. Elmquist, Small 11, 90 (2015).CrossRef
102.
go back to reference Y. Chen, X. Hou, R. Kang, Y. Liang, L. Guo, W. Dai, K. Nishimura, C.-T. Lin, N. Jiang, and Yu. Jinhong, J. Mater. Chem. C 6, 12739 (2018).CrossRef Y. Chen, X. Hou, R. Kang, Y. Liang, L. Guo, W. Dai, K. Nishimura, C.-T. Lin, N. Jiang, and Yu. Jinhong, J. Mater. Chem. C 6, 12739 (2018).CrossRef
103.
go back to reference G.U. Kumar, K. Soni, S. Suresh, K. Ghosh, M.R. Thansekhar, and P. Dinesh-Babu, Exp. Therm. Fluid Sci. 96, 493 (2018).CrossRef G.U. Kumar, K. Soni, S. Suresh, K. Ghosh, M.R. Thansekhar, and P. Dinesh-Babu, Exp. Therm. Fluid Sci. 96, 493 (2018).CrossRef
104.
105.
go back to reference A. Jaikumar, S.G. Kandlikar, and A. Gupta, Heat Transf. Eng. 38, 1274 (2017).CrossRef A. Jaikumar, S.G. Kandlikar, and A. Gupta, Heat Transf. Eng. 38, 1274 (2017).CrossRef
106.
go back to reference C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang, Z. Zhou, J.-W. Jiang, Y.Z. Long, P. Jiang, T.Y. Zhang, B. Sun, Nat. Commun. 11, 1 (2020).CrossRef C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang, Z. Zhou, J.-W. Jiang, Y.Z. Long, P. Jiang, T.Y. Zhang, B. Sun, Nat. Commun. 11, 1 (2020).CrossRef
107.
go back to reference S.G. Prolongo, O. Redondo, M. Campo, and A. Ureña, J. Coat. Technol. Res. 16, 491 (2019).CrossRef S.G. Prolongo, O. Redondo, M. Campo, and A. Ureña, J. Coat. Technol. Res. 16, 491 (2019).CrossRef
108.
go back to reference P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, and Gu. Junwei, Nano-Micro Lett. 13, 1 (2021).CrossRef P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, and Gu. Junwei, Nano-Micro Lett. 13, 1 (2021).CrossRef
109.
go back to reference L. Wang, X. Shi, J. Zhang, Y. Zhang, and Gu. Junwei, J. Mater. Sci. Technol. 52, 119 (2020).CrossRef L. Wang, X. Shi, J. Zhang, Y. Zhang, and Gu. Junwei, J. Mater. Sci. Technol. 52, 119 (2020).CrossRef
110.
go back to reference H. Rho, Y.S. Jang, S. Kim, S. Bae, T.-W. Kim, D.S. Lee, J.-S. Ha, and S.H. Lee, Nanoscale 9, 7565 (2017).CrossRef H. Rho, Y.S. Jang, S. Kim, S. Bae, T.-W. Kim, D.S. Lee, J.-S. Ha, and S.H. Lee, Nanoscale 9, 7565 (2017).CrossRef
111.
go back to reference J. Alizadeh, and M.K. Moraveji, Int. Commun. Heat Mass Transf. 98, 31 (2018).CrossRef J. Alizadeh, and M.K. Moraveji, Int. Commun. Heat Mass Transf. 98, 31 (2018).CrossRef
112.
go back to reference L.P. Yeo, T.D. Nguyen, H. Ling, Y. Lee, D. Mandler, S. Magdassi, and A.I.Y. Tok, J. Sci. Adv. Mater. Dev. 4, 252 (2019). L.P. Yeo, T.D. Nguyen, H. Ling, Y. Lee, D. Mandler, S. Magdassi, and A.I.Y. Tok, J. Sci. Adv. Mater. Dev. 4, 252 (2019).
113.
114.
go back to reference R. Gulfam, W. Zhu, L. Xu II., P.S. Cheema, G. Zhao, and Y. Deng, Energy Convers. Manag. 156, 25 (2018).CrossRef R. Gulfam, W. Zhu, L. Xu II., P.S. Cheema, G. Zhao, and Y. Deng, Energy Convers. Manag. 156, 25 (2018).CrossRef
115.
go back to reference Y. Zhuang, K. Zheng, X. Cao, Q. Fan, G. Ye, Lu. Jiaxin, J. Zhang, and Y. Ma, ACS Nano 14, 11733 (2020).CrossRef Y. Zhuang, K. Zheng, X. Cao, Q. Fan, G. Ye, Lu. Jiaxin, J. Zhang, and Y. Ma, ACS Nano 14, 11733 (2020).CrossRef
116.
go back to reference D. Jeon, S.H. Kim, W. Choi, and C. Byon, Int. J. Heat Mass Transf. 132, 944 (2019).CrossRef D. Jeon, S.H. Kim, W. Choi, and C. Byon, Int. J. Heat Mass Transf. 132, 944 (2019).CrossRef
117.
go back to reference X. Meng, H. Pan, C. Zhu, Z. Chen, Lu. Tao, Xu. Da, Y. Li, and S. Zhu, ACS Appl. Mater. interfaces 10, 22611 (2018).CrossRef X. Meng, H. Pan, C. Zhu, Z. Chen, Lu. Tao, Xu. Da, Y. Li, and S. Zhu, ACS Appl. Mater. interfaces 10, 22611 (2018).CrossRef
118.
go back to reference H. Lu, J. Zhang, J. Luo, W. Gong, C. Li, Q. Li, K. Zhang, M. Hu, and Y. Yao, Compos. Part A Appl. Sci. Manuf. 102, 1 (2017).CrossRef H. Lu, J. Zhang, J. Luo, W. Gong, C. Li, Q. Li, K. Zhang, M. Hu, and Y. Yao, Compos. Part A Appl. Sci. Manuf. 102, 1 (2017).CrossRef
119.
120.
go back to reference Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Yi. Yan, and Gu. Junwei, Carbon 175, 271 (2021).CrossRef Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Yi. Yan, and Gu. Junwei, Carbon 175, 271 (2021).CrossRef
121.
go back to reference K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma, Y. Zhang, J. Kong, and J. Gu, Research (2021). K. Ruan, Y. Guo, C. Lu, X. Shi, T. Ma, Y. Zhang, J. Kong, and J. Gu, Research (2021).
122.
go back to reference V. Dhinakaran, B. Stalin, M. Swapna Sai, J. Vairamuthu, and S. Marichamy, Mater. Today Proc. (2020). V. Dhinakaran, B. Stalin, M. Swapna Sai, J. Vairamuthu, and S. Marichamy, Mater. Today Proc. (2020).
123.
go back to reference A. Aiyiti, X. Bai, Wu. Jing, Xu. Xiangfan, and B. Li, Sci. Bull. 63, 452 (2018).CrossRef A. Aiyiti, X. Bai, Wu. Jing, Xu. Xiangfan, and B. Li, Sci. Bull. 63, 452 (2018).CrossRef
124.
go back to reference C. Zhang, Wu. Ming-Bang, Wu. Bai-Heng, J. Yang, and Xu. Zhi-Kang, J. Mater. Chem. A 6, 8880 (2018).CrossRef C. Zhang, Wu. Ming-Bang, Wu. Bai-Heng, J. Yang, and Xu. Zhi-Kang, J. Mater. Chem. A 6, 8880 (2018).CrossRef
125.
go back to reference Y. Kim, T. Kim, J. Lee, Y.S. Choi, J. Moon, S.Y. Park, T.H. Lee, H.K. Park, S.A. Lee, M.S. Kwon, H.G. Byun, Adv. Mater. 33, 2004827 (2020).CrossRef Y. Kim, T. Kim, J. Lee, Y.S. Choi, J. Moon, S.Y. Park, T.H. Lee, H.K. Park, S.A. Lee, M.S. Kwon, H.G. Byun, Adv. Mater. 33, 2004827 (2020).CrossRef
127.
go back to reference H. Han, Y. Zhang, N. Wang, M.K. Samani, Y. Ni, Z.Y. Mijbil, M. Edwards, S. Xiong, K. Sääskilahti, M. Murugesan, Y. Fu, Nat. Commun. 7, 1 (2016). H. Han, Y. Zhang, N. Wang, M.K. Samani, Y. Ni, Z.Y. Mijbil, M. Edwards, S. Xiong, K. Sääskilahti, M. Murugesan, Y. Fu, Nat. Commun. 7, 1 (2016).
128.
go back to reference X. Li, B. Huang, R. Li, H.-P. Zhang, W. Qin, Z. Qiao, Y. Liu, and G. Yang, Small 15, 1900338 (2019).CrossRef X. Li, B. Huang, R. Li, H.-P. Zhang, W. Qin, Z. Qiao, Y. Liu, and G. Yang, Small 15, 1900338 (2019).CrossRef
129.
130.
go back to reference Y. Zhao, C. Zhu, S. Wang, J.Z. Tian, D.J. Yang, C.K. Chen, H. Cheng, and P. Hing, J. Appl. Phys. 96, 4563 (2004).CrossRef Y. Zhao, C. Zhu, S. Wang, J.Z. Tian, D.J. Yang, C.K. Chen, H. Cheng, and P. Hing, J. Appl. Phys. 96, 4563 (2004).CrossRef
131.
go back to reference X.-K. Chen, J. Liu, Z.-H. Peng, D. Du, and K.-Q. Chen, Appl. Phys. Lett. 110, 091907 (2017).CrossRef X.-K. Chen, J. Liu, Z.-H. Peng, D. Du, and K.-Q. Chen, Appl. Phys. Lett. 110, 091907 (2017).CrossRef
133.
go back to reference Y. Hong, J. Zhang, and X.C. Zeng, Phys. Chem. Chem. Phys. 18, 24164 (2016).CrossRef Y. Hong, J. Zhang, and X.C. Zeng, Phys. Chem. Chem. Phys. 18, 24164 (2016).CrossRef
134.
go back to reference B. Davaji, H.D. Cho, M. Malakoutian, J.-K. Lee, G. Panin, T.W. Kang, and C.H. Lee, Sci. Rep. 7, 1 (2017).CrossRef B. Davaji, H.D. Cho, M. Malakoutian, J.-K. Lee, G. Panin, T.W. Kang, and C.H. Lee, Sci. Rep. 7, 1 (2017).CrossRef
135.
go back to reference X.-K. Chen, Z.-X. Xie, W.-X. Zhou, L.-M. Tang, and K.-Q. Chen, Carbon 100, 492 (2016).CrossRef X.-K. Chen, Z.-X. Xie, W.-X. Zhou, L.-M. Tang, and K.-Q. Chen, Carbon 100, 492 (2016).CrossRef
136.
go back to reference Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri, M. Samani, N. Wang, Y. Ni, Y. Zhang, Z.B. Zhang, Q. Wang, 2D Mater. 7, 012001 (2019).CrossRef Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri, M. Samani, N. Wang, Y. Ni, Y. Zhang, Z.B. Zhang, Q. Wang, 2D Mater. 7, 012001 (2019).CrossRef
137.
go back to reference S.H. Noh, W. Eom, W.J. Lee, H. Park, S.B. Ambade, S.O. Kim, and T.H. Han, Carbon 142, 230 (2019).CrossRef S.H. Noh, W. Eom, W.J. Lee, H. Park, S.B. Ambade, S.O. Kim, and T.H. Han, Carbon 142, 230 (2019).CrossRef
138.
go back to reference Y. Liu, C. Liang, A. Wei, Y. Jiang, Q. Tian, Y. Wu, Z. Xu, Y. Li, F. Guo, Q. Yang, W. Gao, Mater. Today Nano 3, 1 (2018).CrossRef Y. Liu, C. Liang, A. Wei, Y. Jiang, Q. Tian, Y. Wu, Z. Xu, Y. Li, F. Guo, Q. Yang, W. Gao, Mater. Today Nano 3, 1 (2018).CrossRef
139.
go back to reference J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao, Y.-B. Zhu, Ye. Zhang, H.-W. Zhu, Wu. Heng-An, and Yu. Shu-Hong, Nat. Nanotechnol. 12, 434 (2017).CrossRef J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao, Y.-B. Zhu, Ye. Zhang, H.-W. Zhu, Wu. Heng-An, and Yu. Shu-Hong, Nat. Nanotechnol. 12, 434 (2017).CrossRef
140.
go back to reference Y. Liu, P. Li, F. Wang, W. Fang, Xu. Zhen, W. Gao, and C. Gao, Carbon 155, 462 (2019).CrossRef Y. Liu, P. Li, F. Wang, W. Fang, Xu. Zhen, W. Gao, and C. Gao, Carbon 155, 462 (2019).CrossRef
141.
142.
go back to reference R. Menzel, S. Barg, M. Miranda, D.B. Anthony, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, E. Saiz, and M.S.P. Shaffer, Adv. Funct. Mater. 25, 28 (2015).CrossRef R. Menzel, S. Barg, M. Miranda, D.B. Anthony, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, E. Saiz, and M.S.P. Shaffer, Adv. Funct. Mater. 25, 28 (2015).CrossRef
143.
go back to reference A.-R. Raji, T. Varadhachary, K. Nan, T. Wang, J. Lin, Y. Ji, Yu. Bostjan Genorio, C.K. Zhu, and J.M. Tour, ACS Appl. Mater. Interfaces 8, 3551 (2016).CrossRef A.-R. Raji, T. Varadhachary, K. Nan, T. Wang, J. Lin, Y. Ji, Yu. Bostjan Genorio, C.K. Zhu, and J.M. Tour, ACS Appl. Mater. Interfaces 8, 3551 (2016).CrossRef
144.
go back to reference Y.-H. Zhao, Z.-K. Wu, and S.-L. Bai, Int. J. Heat Mass Transf. 101, 470 (2016).CrossRef Y.-H. Zhao, Z.-K. Wu, and S.-L. Bai, Int. J. Heat Mass Transf. 101, 470 (2016).CrossRef
145.
go back to reference Q.-Y. Li, W.-G. Ma, and X. Zhang, Int. J. Heat Mass Transf. 95, 956 (2016).CrossRef Q.-Y. Li, W.-G. Ma, and X. Zhang, Int. J. Heat Mass Transf. 95, 956 (2016).CrossRef
147.
go back to reference P. Goli, H. Ning, X. Li, C.Y. Lu, K.S. Novoselov, and A.A. Balandin, Nano Lett. 14, 1497 (2014).CrossRef P. Goli, H. Ning, X. Li, C.Y. Lu, K.S. Novoselov, and A.A. Balandin, Nano Lett. 14, 1497 (2014).CrossRef
148.
149.
go back to reference W.S. Ryu, D.G. Park, U.S. Song, J.S. Park, and S.B. Ahn, Nucl. Eng. Technol. 45, 219 (2013).CrossRef W.S. Ryu, D.G. Park, U.S. Song, J.S. Park, and S.B. Ahn, Nucl. Eng. Technol. 45, 219 (2013).CrossRef
150.
go back to reference Y.-L. Zhang, Li. Guo, H. Xia, Q.-D. Chen, J. Feng, and H.-B. Sun, Adv. Opt. Mater. 2, 10 (2014).CrossRef Y.-L. Zhang, Li. Guo, H. Xia, Q.-D. Chen, J. Feng, and H.-B. Sun, Adv. Opt. Mater. 2, 10 (2014).CrossRef
151.
go back to reference Q.-Y. Li, X. Zhang, and K. Takahashi, Int. J. Heat Mass Transf. 125, 1230 (2018).CrossRef Q.-Y. Li, X. Zhang, and K. Takahashi, Int. J. Heat Mass Transf. 125, 1230 (2018).CrossRef
Metadata
Title
Graphene for Thermal Storage Applications: Characterization, Simulation and Modelling
Authors
Dhinakaran Veeman
M. Swapna Sai
V Rajkumar
M. Ravichandran
S. Manivannan
Publication date
12-07-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09079-0

Other articles of this Issue 9/2021

Journal of Electronic Materials 9/2021 Go to the issue