Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Green Gaseous Fuel Technology

Authors : Basanta Kumara Behera, Ajit Varma

Published in: Bioenergy for Sustainability and Security

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The concept of biogas production by anaerobic digestion (AD) and its subsequent conversion into electricity in combined heat and power (CHP) plants or feeding as biomethane into the gas networks is an essential contribution to utilizing biowastes from households, communities and agriculture, on the one hand, and the purposeful production of CO2-neutral energy from regenerative raw materials (Fig. 4.1) on the other.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McCabe, J and Eckenfelder, W (eds.) (1957). Biological Treatment of Sewage and Industrial Wastes. Two volumes. New York: Reinbold Publishing. McCabe, J and Eckenfelder, W (eds.) (1957). Biological Treatment of Sewage and Industrial Wastes. Two volumes. New York: Reinbold Publishing.
2.
go back to reference Buswell, AM and Hatfield, WD (1936). Bulletin 32, Anaerobic Fermentations. Urbana, IL: State of Illinois Department of Registration and Education. Buswell, AM and Hatfield, WD (1936). Bulletin 32, Anaerobic Fermentations. Urbana, IL: State of Illinois Department of Registration and Education.
3.
go back to reference Sanders, WTM et al (2000). Anaerobic hydrolysis kinetics of particulate substrates. Water Science and Technology, 41(3): 17–24.CrossRef Sanders, WTM et al (2000). Anaerobic hydrolysis kinetics of particulate substrates. Water Science and Technology, 41(3): 17–24.CrossRef
4.
go back to reference Mata-Alvarez, J (2003). Fundamentals of the anaerobic digestion process. In: Mata-Alvarez, J. (ed.), Biomethanization of the Organic Fraction of Municipal Solid Waste. IWA Publishing, UK. Mata-Alvarez, J (2003). Fundamentals of the anaerobic digestion process. In: Mata-Alvarez, J. (ed.), Biomethanization of the Organic Fraction of Municipal Solid Waste. IWA Publishing, UK.
5.
go back to reference Pavlostathis, SG and Giraldo-Gomez, E (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5,6): 411–490.CrossRef Pavlostathis, SG and Giraldo-Gomez, E (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5,6): 411–490.CrossRef
6.
go back to reference Gerardi, MH (ed.) (2003). The Microbiology of Anaerobic Digesters. Wiley Publishers. Gerardi, MH (ed.) (2003). The Microbiology of Anaerobic Digesters. Wiley Publishers.
8.
go back to reference Reinhold, F and Noak, W (1956). Laboratoriumsver-suche uber die Gasgewinnung aus landwirtschaftlichen Stoffen. In: Liebmann, H (ed.), Gewinnung und Verwertung von Methan aus Klärschlamm und Mist., R. Oldenbourg, Munchen, Germany. Reinhold, F and Noak, W (1956). Laboratoriumsver-suche uber die Gasgewinnung aus landwirtschaftlichen Stoffen. In: Liebmann, H (ed.), Gewinnung und Verwertung von Methan aus Klärschlamm und Mist., R. Oldenbourg, Munchen, Germany.
9.
go back to reference Stewart, DJ et al (1984). Biogas production from crops and organic wastes. Results of continuous digestion tests. New Zealand J. Sci., 27: 285–294. Stewart, DJ et al (1984). Biogas production from crops and organic wastes. Results of continuous digestion tests. New Zealand J. Sci., 27: 285–294.
10.
go back to reference Weiland, P (2008). Impact of competition claims for food and energy on German biogas production. Paper presented at the IEA Bio-energy Seminar, Ludlow, UK, April 17th, 2008 and Fachagentur für Nachwachsende Rohstoffe (FNR), Hofplatz 1, D-18276 Gülzow (ed.), ISBN 978-3-939371-46-5. Weiland, P (2008). Impact of competition claims for food and energy on German biogas production. Paper presented at the IEA Bio-energy Seminar, Ludlow, UK, April 17th, 2008 and Fachagentur für Nachwachsende Rohstoffe (FNR), Hofplatz 1, D-18276 Gülzow (ed.), ISBN 978-3-939371-46-5.
11.
go back to reference MNES Report (2001). Renewable Energy in India and business opportunities. Govt of India, New Delhi. MNES Report (2001). Renewable Energy in India and business opportunities. Govt of India, New Delhi.
12.
go back to reference Nirmala, B and Gaur, AC (1997). Effects of carbon and nitrogen ratio on rice straw biomethanation. Journal of Rural Energy, 11: 1–16. Nirmala, B and Gaur, AC (1997). Effects of carbon and nitrogen ratio on rice straw biomethanation. Journal of Rural Energy, 11: 1–16.
13.
go back to reference Singh, JB and Anil, D (1988). Manual on Deenbandhu Biogas plant. New Delhi: Tata McGraw Hill Publishing. Singh, JB and Anil, D (1988). Manual on Deenbandhu Biogas plant. New Delhi: Tata McGraw Hill Publishing.
14.
go back to reference Allan Elliott and Talat Mahmood (2007). Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Research, 41: 4273–4286.CrossRef Allan Elliott and Talat Mahmood (2007). Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Research, 41: 4273–4286.CrossRef
15.
go back to reference Erden, G and Filibeli, A (2009). Ultrasonic pre-treatment of biological sludge: Consequences for disintegration, anaerobic biodegradability, and filterability. J. Chem. Technol. Biotechnol., 85(1): 145–150.CrossRef Erden, G and Filibeli, A (2009). Ultrasonic pre-treatment of biological sludge: Consequences for disintegration, anaerobic biodegradability, and filterability. J. Chem. Technol. Biotechnol., 85(1): 145–150.CrossRef
16.
go back to reference Haug, RT et al (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pol. Control Fed., 73–85. Haug, RT et al (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pol. Control Fed., 73–85.
17.
go back to reference Kim, J et al (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng., 95(3): 271–275.CrossRef Kim, J et al (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng., 95(3): 271–275.CrossRef
18.
go back to reference Neyens, E and Baeyens, J (2002). A review of thermal sludge pretreatment processes to improve dewaterability. Journal of Hazardous Materials, B98: 51–67.CrossRef Neyens, E and Baeyens, J (2002). A review of thermal sludge pretreatment processes to improve dewaterability. Journal of Hazardous Materials, B98: 51–67.CrossRef
19.
go back to reference Penaud, V et al (1999). Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enz Microbial Tech, 25: 258–263.CrossRef Penaud, V et al (1999). Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enz Microbial Tech, 25: 258–263.CrossRef
20.
go back to reference Saktaywin, W et al (2005). Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res., 39: 902–910.CrossRef Saktaywin, W et al (2005). Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res., 39: 902–910.CrossRef
21.
go back to reference Tanaka, S et al (1997). Effects of thermo-chemical pre-treatment on the anaerobic digestion of waste activated sludge. Wat Sci Tech, 35: 209–215.CrossRef Tanaka, S et al (1997). Effects of thermo-chemical pre-treatment on the anaerobic digestion of waste activated sludge. Wat Sci Tech, 35: 209–215.CrossRef
22.
go back to reference Tiehm, A et al (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol., 36: 121–128.CrossRef Tiehm, A et al (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol., 36: 121–128.CrossRef
23.
go back to reference Wang, Q et al (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pre-treatment. Bioresour. Technol., 68: 309–313.CrossRef Wang, Q et al (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pre-treatment. Bioresour. Technol., 68: 309–313.CrossRef
24.
go back to reference Weemaes et al (2000). Anaerobic digestion of ozonized biosolids. Water Research, 34(8): 2330–2336.CrossRef Weemaes et al (2000). Anaerobic digestion of ozonized biosolids. Water Research, 34(8): 2330–2336.CrossRef
25.
go back to reference Yeom, IT (2002). Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Science and Technology, 46(4–5): 421–425.CrossRef Yeom, IT (2002). Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Science and Technology, 46(4–5): 421–425.CrossRef
26.
go back to reference https://www.oxfordenergy.org Stern (2017). The Future of Gas in Decarbonising European Energy Markets. https://www.oxfordenergy.org Stern (2017). The Future of Gas in Decarbonising European Energy Markets.
27.
go back to reference https://www.eba.europa.euEBA (2016). Statistical report. https://www.eba.europa.euEBA (2016). Statistical report.
28.
go back to reference https://www.oxfordenergy.org (2017). Biogas: A significant contribution to decarbonising gas markets. https://www.oxfordenergy.org (2017). Biogas: A significant contribution to decarbonising gas markets.
29.
go back to reference www.ec.europa.eu/eurostat/.../Electricity_production,_consumption_and_market_overview Eurostat website (Electricity production, consumption and market overview). www.ec.europa.eu/eurostat/.../Electricity_production,_consumption_and_market_overview Eurostat website (Electricity production, consumption and market overview).
30.
go back to reference European-biogas.eu/events/all-events/eba-workshop EBA Workshop (2017). Contribution of biogas towards European renewable energy policy beyond 2020. European-biogas.eu/events/all-events/eba-workshop EBA Workshop (2017). Contribution of biogas towards European renewable energy policy beyond 2020.
31.
go back to reference Kuczyńska, I and Pomykała, R (2012). Biogaz z odpadów paliwem dla transportu? bariery i perspektywy, Energetyka gazowa, 4: 34–39. Kuczyńska, I and Pomykała, R (2012). Biogaz z odpadów paliwem dla transportu? bariery i perspektywy, Energetyka gazowa, 4: 34–39.
32.
go back to reference Niemiec. Możliwości wdrożenia technologii w Polsce (2011). www.cire. pl,14.12.2012 Niemiec. Możliwości wdrożenia technologii w Polsce (2011). www.cire. pl,14.12.2012
33.
go back to reference Smerkowska, B (2012). Ekonomiczne aspekty wytwarzania biogazu w celu wprowadzenia do sieci gazowej, Info Day projektu GreenGasGrids, 24 kwietnia. Smerkowska, B (2012). Ekonomiczne aspekty wytwarzania biogazu w celu wprowadzenia do sieci gazowej, Info Day projektu GreenGasGrids, 24 kwietnia.
34.
go back to reference Fuksa, D et al (2012). Pozytywne aspekty wykorzystania biogazuna przykładzie transportu, Materiały konferencyjne IZIP? Zakopane, 475–485. Fuksa, D et al (2012). Pozytywne aspekty wykorzystania biogazuna przykładzie transportu, Materiały konferencyjne IZIP? Zakopane, 475–485.
35.
go back to reference Ryckebosch, E et al (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5): 1633–1645.CrossRef Ryckebosch, E et al (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5): 1633–1645.CrossRef
36.
go back to reference Lachwacka, ME (2009). Technologie uszlachetniania biogazu do jakości gazu ziemnego. Czysta Energia, 12: 26–27. Lachwacka, ME (2009). Technologie uszlachetniania biogazu do jakości gazu ziemnego. Czysta Energia, 12: 26–27.
37.
go back to reference Mroczkowski, P and Seiffert, M (2011). Oczyszczanie i zatłaczanie biogazu na przykładzie. Mroczkowski, P and Seiffert, M (2011). Oczyszczanie i zatłaczanie biogazu na przykładzie.
38.
go back to reference Dyrektywa, Rady (1999). WE z dnia 26 kwietnia, r.w sprawie składowania odpadów. Dyrektywa, Rady (1999). WE z dnia 26 kwietnia, r.w sprawie składowania odpadów.
39.
go back to reference https://books.google.co.in/books (2007). Steve Gagnon, It’s Elemental: Hydrogen. Jefferson Lab. https://books.google.co.in/books (2007). Steve Gagnon, It’s Elemental: Hydrogen. Jefferson Lab.
40.
go back to reference Levin, DB et al (2004). Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Ener, 29: 173–185.CrossRef Levin, DB et al (2004). Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Ener, 29: 173–185.CrossRef
41.
go back to reference Ley, AC and Mauzerall, DC (1982). Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta, 680: 95–106.CrossRef Ley, AC and Mauzerall, DC (1982). Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta, 680: 95–106.CrossRef
42.
go back to reference Greenbaum, E (1988). Energetic efficiency of hydrogen photoevolution by algal water-splitting. Biophys J, 54: 365–368.CrossRef Greenbaum, E (1988). Energetic efficiency of hydrogen photoevolution by algal water-splitting. Biophys J, 54: 365–368.CrossRef
43.
go back to reference Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRef Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRef
44.
go back to reference Smith, G et al (1992). Hydrogen production by Cyanobacteria. International Journal of Hydrogen Energy, 17(9): 695–698.CrossRef Smith, G et al (1992). Hydrogen production by Cyanobacteria. International Journal of Hydrogen Energy, 17(9): 695–698.CrossRef
45.
go back to reference Kitashima, M et al (2012). Flexible Plastic Bioreactors for Photobiological Hydrogen Production by Hydrogenase-Deficient Cyanobacteria. Biosci. Biochem. Biotechnol., 76: 831–833.CrossRef Kitashima, M et al (2012). Flexible Plastic Bioreactors for Photobiological Hydrogen Production by Hydrogenase-Deficient Cyanobacteria. Biosci. Biochem. Biotechnol., 76: 831–833.CrossRef
46.
go back to reference Lindblad, P et al (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen Energy, 27: 1271–1281.CrossRef Lindblad, P et al (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen Energy, 27: 1271–1281.CrossRef
47.
go back to reference Howarth, DC and Codd, GA (1985). The uptake and production of molecular hydrogen by unicellular cyanobacteria. Journal of General Microbiology, 131: 1561–1569. Howarth, DC and Codd, GA (1985). The uptake and production of molecular hydrogen by unicellular cyanobacteria. Journal of General Microbiology, 131: 1561–1569.
48.
go back to reference Weissman, JC and Benemann, JR (1977). Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Applied and Environmental Microbiology, 33: 123–131. Weissman, JC and Benemann, JR (1977). Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Applied and Environmental Microbiology, 33: 123–131.
49.
go back to reference Sveshnikov, DA et al (1997). Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiology Letters, 147: 297–301.CrossRef Sveshnikov, DA et al (1997). Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiology Letters, 147: 297–301.CrossRef
50.
go back to reference Borodin, VB et al (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69: 478–485.CrossRef Borodin, VB et al (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69: 478–485.CrossRef
51.
go back to reference Kosourov, S et al (2002). Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Biotechnology and Bioengineering, 78: 731–740.CrossRef Kosourov, S et al (2002). Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Biotechnology and Bioengineering, 78: 731–740.CrossRef
52.
go back to reference Guan, YF et al (2004). Two-stage photobiological production of hydrogen by marine green algae Platymonas subcordifermis. Biochemical Engineering Journal, 19: 69–73.CrossRef Guan, YF et al (2004). Two-stage photobiological production of hydrogen by marine green algae Platymonas subcordifermis. Biochemical Engineering Journal, 19: 69–73.CrossRef
53.
go back to reference Laurinavichene, TV et al (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31: 659–667.CrossRef Laurinavichene, TV et al (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31: 659–667.CrossRef
54.
go back to reference John Benemann (1996). Hydrogen biotechnology: Progress and prospects. Journal Nature Biotechnology, 14: 1101–1103.CrossRef John Benemann (1996). Hydrogen biotechnology: Progress and prospects. Journal Nature Biotechnology, 14: 1101–1103.CrossRef
55.
go back to reference Belafi-Bako, K et al (2002). Enzymatic biodiesel production from sunflower oil by Candida Antarctica lipase in a solvent-free system. Biocatalysis and Biotransformation, 20: 437–439.CrossRef Belafi-Bako, K et al (2002). Enzymatic biodiesel production from sunflower oil by Candida Antarctica lipase in a solvent-free system. Biocatalysis and Biotransformation, 20: 437–439.CrossRef
56.
go back to reference Masukawa, H et al (2002). Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol, 58: 618–624.CrossRef Masukawa, H et al (2002). Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol, 58: 618–624.CrossRef
57.
go back to reference Pinto, F et al (2002). A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy, 27: 1209–1215.CrossRef Pinto, F et al (2002). A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy, 27: 1209–1215.CrossRef
58.
go back to reference Gfeller, RP and Gibbs, M (1985). Fermentative Metabolism of Chlamydomonas reinhardtii: II. Role of Plastoquin. Plant Physiol., 77: 509–511.CrossRef Gfeller, RP and Gibbs, M (1985). Fermentative Metabolism of Chlamydomonas reinhardtii: II. Role of Plastoquin. Plant Physiol., 77: 509–511.CrossRef
59.
go back to reference Ohta, SK, Miyamoto and Miura, Y (1987) Hydrogen evolution as a consumption mode of reducing equivalent in green algae fermentation. Plant Physiology, 83: 1022–1026.CrossRef Ohta, SK, Miyamoto and Miura, Y (1987) Hydrogen evolution as a consumption mode of reducing equivalent in green algae fermentation. Plant Physiology, 83: 1022–1026.CrossRef
60.
go back to reference Miura, Y et al (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conv Manag, 38: S533-S537.CrossRef Miura, Y et al (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conv Manag, 38: S533-S537.CrossRef
61.
go back to reference Basak, N and Das, D (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state-of-the-art. World J. Microbiol. Biotechnol., 23: 31–42.CrossRef Basak, N and Das, D (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state-of-the-art. World J. Microbiol. Biotechnol., 23: 31–42.CrossRef
62.
go back to reference Redwood, MD (2009). Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev. Environ. Sci. Biotechnol., 8: 149–185.CrossRef Redwood, MD (2009). Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev. Environ. Sci. Biotechnol., 8: 149–185.CrossRef
63.
go back to reference Holladay, JD et al (2009). An overview of hydrogen production technologies. Catal. Today, 139: 244–260.CrossRef Holladay, JD et al (2009). An overview of hydrogen production technologies. Catal. Today, 139: 244–260.CrossRef
64.
go back to reference Kapdan, IK et al (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int. J. Hydrog. Energy, 34: 2201–2207.CrossRef Kapdan, IK et al (2009). Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int. J. Hydrog. Energy, 34: 2201–2207.CrossRef
65.
go back to reference Keskin, T and Hallenbeck, PC (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour. Technol., 112: 131–136.CrossRef Keskin, T and Hallenbeck, PC (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour. Technol., 112: 131–136.CrossRef
66.
go back to reference Guo, XM et al (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35: 10660–10673.CrossRef Guo, XM et al (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35: 10660–10673.CrossRef
67.
go back to reference Zhao, X et al (2012). The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. International Journal of Hydrogen Energy, 37: 13711–13717.CrossRef Zhao, X et al (2012). The effects of metal ions and L-cysteine on hydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. International Journal of Hydrogen Energy, 37: 13711–13717.CrossRef
68.
go back to reference Wolfrum, EJ and Maness, P (2003). Biological Water Gas Shift. U.S. DOE Hydrogen, Fuel Cell and Infrastructure Technologies Program Review; May 19–22, Berkeley, California. Wolfrum, EJ and Maness, P (2003). Biological Water Gas Shift. U.S. DOE Hydrogen, Fuel Cell and Infrastructure Technologies Program Review; May 19–22, Berkeley, California.
69.
go back to reference Akkerman, I et al (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27: 1195–1208.CrossRef Akkerman, I et al (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27: 1195–1208.CrossRef
70.
go back to reference Greenbaum, E (1984). Biophotolysis of water: The light saturation curves. Photobiochemistry and Photobiophysics, 8: 323–332. Greenbaum, E (1984). Biophotolysis of water: The light saturation curves. Photobiochemistry and Photobiophysics, 8: 323–332.
71.
go back to reference Polle, JEW et al (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy 27(11): 1257–1264.CrossRef Polle, JEW et al (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy 27(11): 1257–1264.CrossRef
72.
go back to reference Quigg, A et al (2006). Limitations on microalgal growth at very low photon flux densities: The role of energy slippage and H+ leakage. Photosynthesis Research, 88: 299–310.CrossRef Quigg, A et al (2006). Limitations on microalgal growth at very low photon flux densities: The role of energy slippage and H+ leakage. Photosynthesis Research, 88: 299–310.CrossRef
74.
go back to reference Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRef Hallenbeck, PC and Benemann, JR (2002). Biological hydrogen production: Fundamentals and limiting processes. Int J Hydrogen Energy, 27: 1185–1193.CrossRef
Metadata
Title
Green Gaseous Fuel Technology
Authors
Basanta Kumara Behera
Ajit Varma
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-96538-3_4