Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2020

14-02-2020

Growth and mechanical properties of intermetallic compound between solid cobalt and molten tin

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transient liquid phase (TLP) bonding has gained attention due to the advantage of producing bond that has a higher melting point than the bonding temperature. Cobalt (Co) is a potential candidate for base metal in TLP bond. This work studied the interfacial reaction in binary cobalt–tin (Co–Sn) system, growth kinetics and mechanical properties of Co–Sn intermetallic compound (IMC) for transient liquid phase (TLP) joints. Dipping method was employed for the investigation of Co–Sn IMC growth. Solid Co was immersed into molten Sn statically at varying temperatures (250–300 °C) and durations (15–60 min). The IMC formed was characterized by field emission scanning electron microscope (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) tests and nanoindentation. The results showed the formation of a CoSn3 layer with plate-like morphology at temperature range of 250–300 °C. The thickness of the CoSn3 layer increases with dipping temperature and duration. The growth of CoSn3 is suggested to be controlled by only diffusion reaction at 250 °C. As temperature increases to 300 °C, the growth of CoSn3 is controlled by chemical reaction. The average nanohardness and Young’s modulus of CoSn3 phase reported in this work are 4.25 ± 0.6 GPa and 98.30 ± 9.0 GPa, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Agarwal, W. Zhang, P. Limaye, W. Ruythooren, High density Cu–Sn TLP bonding for 3D integration. In Electronic Components and Technology Conference, 2009 ECTC 2009. 59th. IEEE R. Agarwal, W. Zhang, P. Limaye, W. Ruythooren, High density Cu–Sn TLP bonding for 3D integration. In Electronic Components and Technology Conference, 2009 ECTC 2009. 59th. IEEE
2.
go back to reference J. Li, P. Agyakwa, C. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58(9), 3429–3443 (2010)CrossRef J. Li, P. Agyakwa, C. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58(9), 3429–3443 (2010)CrossRef
3.
go back to reference J. Li, P. Agyakwa, C. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)CrossRef J. Li, P. Agyakwa, C. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)CrossRef
4.
go back to reference A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: experiments and simulations. J. Alloy Compd. 617, 763–773 (2014)CrossRef A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: experiments and simulations. J. Alloy Compd. 617, 763–773 (2014)CrossRef
5.
go back to reference D. Jung, A. Sharma, M. Mayer, J. Jung, A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. Rev. Adv. Mater. Sci. 53(2), 147–160 (2018)CrossRef D. Jung, A. Sharma, M. Mayer, J. Jung, A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. Rev. Adv. Mater. Sci. 53(2), 147–160 (2018)CrossRef
6.
go back to reference G. Humpston, D.M. Jacobson, Principles of soldering (ASM International, Ohio, 2004) G. Humpston, D.M. Jacobson, Principles of soldering (ASM International, Ohio, 2004)
7.
go back to reference B.-S. Lee, S.-K. Hyun, J.-W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. 28(11), 7827–7833 (2017) B.-S. Lee, S.-K. Hyun, J.-W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. 28(11), 7827–7833 (2017)
8.
go back to reference S.W. Yoon, M.D. Glover, K. Shiozaki, Nickel–tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles. IEEE Trans. Power Electron. 28(5), 2448–2456 (2013)CrossRef S.W. Yoon, M.D. Glover, K. Shiozaki, Nickel–tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles. IEEE Trans. Power Electron. 28(5), 2448–2456 (2013)CrossRef
9.
go back to reference Z. Lai, X. Kong, Q. You, X. Cao, Microstructure and mechanical properties of Co/Sn-10Bi couple and Co/Sn-10Bi/Co joint. Microelectron. Reliab. 68, 69–76 (2017)CrossRef Z. Lai, X. Kong, Q. You, X. Cao, Microstructure and mechanical properties of Co/Sn-10Bi couple and Co/Sn-10Bi/Co joint. Microelectron. Reliab. 68, 69–76 (2017)CrossRef
10.
go back to reference S. Tian, J. Zhou, F. Xue, R. Cao, F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding. J. Mater. Sci. 29(19), 16388–16400 (2018) S. Tian, J. Zhou, F. Xue, R. Cao, F. Wang, Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding. J. Mater. Sci. 29(19), 16388–16400 (2018)
11.
go back to reference G. Vakanas, O. Minho, B. Dimcic, K. Vanstreels, B. Vandecasteele, I. De Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I. De Wolf, Formation, processing and characterization of Co–Sn intermetallic compounds for potential integration in 3D interconnects. Microelectron. Eng. 140, 72–80 (2015)CrossRef G. Vakanas, O. Minho, B. Dimcic, K. Vanstreels, B. Vandecasteele, I. De Preter, J. Derakhshandeh, K. Rebibis, M. Kajihara, I. De Wolf, Formation, processing and characterization of Co–Sn intermetallic compounds for potential integration in 3D interconnects. Microelectron. Eng. 140, 72–80 (2015)CrossRef
12.
go back to reference H. Okamoto, Co–Sn (Cobalt–Tin). J. Phase Equilib. Diffus. 27(3), 308 (2006)CrossRef H. Okamoto, Co–Sn (Cobalt–Tin). J. Phase Equilib. Diffus. 27(3), 308 (2006)CrossRef
13.
go back to reference C.-H. Wang, S.-W. Chen, Cruciform pattern formation in Sn/Co couples. J. Mater. Res. 22(12), 3404–3409 (2007)CrossRef C.-H. Wang, S.-W. Chen, Cruciform pattern formation in Sn/Co couples. J. Mater. Res. 22(12), 3404–3409 (2007)CrossRef
14.
go back to reference T. Laurila, A. Paul, Understanding the growth of interfacial reaction product layers between dissimilar materials. Crit. Rev. Solid State Mater. Sci. 41(2), 73–105 (2015)CrossRef T. Laurila, A. Paul, Understanding the growth of interfacial reaction product layers between dissimilar materials. Crit. Rev. Solid State Mater. Sci. 41(2), 73–105 (2015)CrossRef
15.
go back to reference W. Zhu, J. Wang, H. Liu, Z. Jin, W. Gong, The interfacial reaction between Sn–Ag alloys and Co substrate. Mater. Sci. Eng. A 456(1–2), 109–113 (2007)CrossRef W. Zhu, J. Wang, H. Liu, Z. Jin, W. Gong, The interfacial reaction between Sn–Ag alloys and Co substrate. Mater. Sci. Eng. A 456(1–2), 109–113 (2007)CrossRef
16.
go back to reference W. Zhu, H. Liu, J. Wang, Z. Jin, Formation of intermetallic compound (IMC) between Sn and Co substrate. J. Alloy Compd. 456(1–2), 113–117 (2008)CrossRef W. Zhu, H. Liu, J. Wang, Z. Jin, Formation of intermetallic compound (IMC) between Sn and Co substrate. J. Alloy Compd. 456(1–2), 113–117 (2008)CrossRef
17.
go back to reference C.-H. Wang, C.-Y. Kuo, S.-E. Huang, P.-Y. Li, Temperature effects on liquid-state Sn/Co interfacial reactions. Intermetallics 32, 57–63 (2013)CrossRef C.-H. Wang, C.-Y. Kuo, S.-E. Huang, P.-Y. Li, Temperature effects on liquid-state Sn/Co interfacial reactions. Intermetallics 32, 57–63 (2013)CrossRef
18.
go back to reference N. Odashima, O. Minho, M. Kajihara, Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)CrossRef N. Odashima, O. Minho, M. Kajihara, Formation of intermetallic compounds and microstructure evolution due to isothermal reactive diffusion at the interface between solid Co and liquid Sn. J. Electron. Mater. 49(2), 1568–1576 (2020)CrossRef
19.
go back to reference P. Ratchev, R. Labie, E. Beyne, Nanohardness study of CoSn/sub 2/intermetallic layers formed between CO UBM and Sn flip-chip solder joints. in Electronics Packaging Technology Conference, 2004. EPTC 2004. Proceedings of 6th. IEEE (2004) P. Ratchev, R. Labie, E. Beyne, Nanohardness study of CoSn/sub 2/intermetallic layers formed between CO UBM and Sn flip-chip solder joints. in Electronics Packaging Technology Conference, 2004. EPTC 2004. Proceedings of 6th. IEEE (2004)
20.
go back to reference Y. Goh, Y.S. Goh, E.L. Lee, M.T. Ong, A. Haseeb, Formation and characterization of intermetallic compounds in electroplated cobalt–tin multilayers. J Mater Sci: Mater Electron 29(7), 5791–5798 (2018) Y. Goh, Y.S. Goh, E.L. Lee, M.T. Ong, A. Haseeb, Formation and characterization of intermetallic compounds in electroplated cobalt–tin multilayers. J Mater Sci: Mater Electron 29(7), 5791–5798 (2018)
21.
go back to reference W.F. Smith, J. Hashemi, Foundations of materials science and engineering (McGraw-Hill, New York, 2011) W.F. Smith, J. Hashemi, Foundations of materials science and engineering (McGraw-Hill, New York, 2011)
22.
go back to reference V. Dybkov, V. Khoruzha, V. Sidorko, K. Meleshevich, A. Samelyuk, D. Berry, K. Barmak, Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys. J. Mater. Sci. 44(22), 5960–5979 (2009)CrossRef V. Dybkov, V. Khoruzha, V. Sidorko, K. Meleshevich, A. Samelyuk, D. Berry, K. Barmak, Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys. J. Mater. Sci. 44(22), 5960–5979 (2009)CrossRef
23.
go back to reference A. Lang, W. Jeitschko, Two new phases in the system cobalt-tin: the crystal structures of α-and β-CoSn 3. Zeitschrift für Metallkunde. 87(10), 759–764 (1996) A. Lang, W. Jeitschko, Two new phases in the system cobalt-tin: the crystal structures of α-and β-CoSn 3. Zeitschrift für Metallkunde. 87(10), 759–764 (1996)
24.
go back to reference B.-J. Lee, N.M. Hwang, H.M. Lee, Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Mater. 45(5), 1867–1874 (1997)CrossRef B.-J. Lee, N.M. Hwang, H.M. Lee, Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Mater. 45(5), 1867–1874 (1997)CrossRef
25.
go back to reference O.M. Abdelhadi, L. Ladani, IMC growth of Sn-3.5 Ag/Cu system: combined chemical reaction and diffusion mechanisms. J. Alloy Compd. 537, 87–99 (2012)CrossRef O.M. Abdelhadi, L. Ladani, IMC growth of Sn-3.5 Ag/Cu system: combined chemical reaction and diffusion mechanisms. J. Alloy Compd. 537, 87–99 (2012)CrossRef
26.
go back to reference L. Zhang, Z.-Q. Liu, Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 1–15 (2020) L. Zhang, Z.-Q. Liu, Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm). J. Mater. Sci. 1–15 (2020)
27.
go back to reference S. Li, F. Xin, L. Li, Reaction engineering (Butterworth-Heinemann, Oxford, 2017) S. Li, F. Xin, L. Li, Reaction engineering (Butterworth-Heinemann, Oxford, 2017)
28.
go back to reference Y. Takamatsu, M. Kajihara, Kinetics of solid-state reactive diffusion between Co and Sn. Mater. Trans. 55(7), 1058–1064 (2014)CrossRef Y. Takamatsu, M. Kajihara, Kinetics of solid-state reactive diffusion between Co and Sn. Mater. Trans. 55(7), 1058–1064 (2014)CrossRef
29.
go back to reference F. Gao, F. Cheng, H. Nishikawa, T. Takemoto, Characterization of Co–Sn intermetallic compounds in Sn–3.0 Ag–0.5 Cu–0.5 Co lead-free solder alloy. Mater. Lett. 62(15), 2257–2259 (2008)CrossRef F. Gao, F. Cheng, H. Nishikawa, T. Takemoto, Characterization of Co–Sn intermetallic compounds in Sn–3.0 Ag–0.5 Cu–0.5 Co lead-free solder alloy. Mater. Lett. 62(15), 2257–2259 (2008)CrossRef
Metadata
Title
Growth and mechanical properties of intermetallic compound between solid cobalt and molten tin
Publication date
14-02-2020
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03006-5

Other articles of this Issue 6/2020

Journal of Materials Science: Materials in Electronics 6/2020 Go to the issue