Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 3/2019

02-01-2019

Growth of SnS nanoparticles and its ability as ethanol gas sensor

Authors: Chandan Rana, Swades Ranjan Bera, Satyajit Saha

Published in: Journal of Materials Science: Materials in Electronics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SnS nanoparticles are grown by chemical route using tetrahydrofuran as medium. Sodium borohydride acts as reducing agent. The growth time is varied from 3 to 14 h at room temperature. The crystallite size increases with increase of growth time. The band gap is maximum for 3 h grown sample and decreases for samples grown for longer time. Photoluminescence spectra show possible defect states. Energy dispersive X-ray analysis shows that stoichiometry is well maintained for sample grown for 7 h. The films of SnS are deposited on glass from the dispersed medium. Atomic force microscopy analysis shows that roughness is small for lower growth time sample. The gas sensing in ethanol are carried out for different growth time films. The sensitivity is maximum for optimum growth time sample i.e. for the sample grown for 7 h. The chain like structure and good stochiometry of the SnS nanoparticles increases the sensitivity of ethanol gas sensing. Rapid response and recovery times of these sensors are observed for samples especially for 7 h grown sample at 250 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)CrossRef Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)CrossRef
2.
go back to reference J. Liu, D. Xue, Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 56, 243–250 (2010)CrossRef J. Liu, D. Xue, Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 56, 243–250 (2010)CrossRef
3.
go back to reference X.G. Peng, L. Manna, L.W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)CrossRef X.G. Peng, L. Manna, L.W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)CrossRef
4.
go back to reference C. Lai, M. Lu, L. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30 (2012)CrossRef C. Lai, M. Lu, L. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22, 19–30 (2012)CrossRef
5.
go back to reference Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)CrossRef
6.
go back to reference W. Wang, L. Shi, D. Lan, Q. Li, Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J. Power Sources 377, 1–6 (2018)CrossRef W. Wang, L. Shi, D. Lan, Q. Li, Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J. Power Sources 377, 1–6 (2018)CrossRef
7.
go back to reference F.W. Lee, C.W. Ma, Y.H. Lin, P.C. Huang, Y.L. Su, Y.J. Yang, A micromachined photo-supercapacitor integrated with CdS-sensitized solar cells and buckypaper. Sens. Mater. 28, 7 (2016) F.W. Lee, C.W. Ma, Y.H. Lin, P.C. Huang, Y.L. Su, Y.J. Yang, A micromachined photo-supercapacitor integrated with CdS-sensitized solar cells and buckypaper. Sens. Mater. 28, 7 (2016)
8.
go back to reference N.B. Sonawane, K.V. Gurav, R.R. Ahire, J.H. Kim, B.R. Sankapal, CdS nanowires with PbS nanoparticles surface coating as room temperature liquefied petroleum gas sensor. Sens. Actuator A 216, 78–83 (2014)CrossRef N.B. Sonawane, K.V. Gurav, R.R. Ahire, J.H. Kim, B.R. Sankapal, CdS nanowires with PbS nanoparticles surface coating as room temperature liquefied petroleum gas sensor. Sens. Actuator A 216, 78–83 (2014)CrossRef
9.
go back to reference S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J.H. Kim, V.B. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014)CrossRef S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J.H. Kim, V.B. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014)CrossRef
10.
go back to reference K. Cen et al., A risk-based methodology for the optimal placement of hazardous gas detectors. Chin. J. Chem. Eng. 26(5), 1078–1086 (2017)CrossRef K. Cen et al., A risk-based methodology for the optimal placement of hazardous gas detectors. Chin. J. Chem. Eng. 26(5), 1078–1086 (2017)CrossRef
11.
go back to reference Q. Yang, et.al., First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Device Libr. 37, 660–662 (2016)CrossRef Q. Yang, et.al., First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Device Libr. 37, 660–662 (2016)CrossRef
12.
go back to reference A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, H. Mohebbi, Fabrication of resistive CO gas sensor based on SnO2 nanopowders via low frequency AC electrophoretic deposition. J. Mater. Sci.: Mater. Electron. 20, 127–131 (2009) A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, H. Mohebbi, Fabrication of resistive CO gas sensor based on SnO2 nanopowders via low frequency AC electrophoretic deposition. J. Mater. Sci.: Mater. Electron. 20, 127–131 (2009)
13.
go back to reference M. Li, et. al., Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuator B 217, 198–201 (2015)CrossRef M. Li, et. al., Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection. Sens. Actuator B 217, 198–201 (2015)CrossRef
14.
go back to reference D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)CrossRef D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)CrossRef
16.
go back to reference J. Tan, J. Chen, K. Liu, X. Huang, Synthesis of porous α-Fe2O3 microrods via insitu decomposition of FeC2O4 precursor for ultra-fast responding and recovering ethanol gas sensor. Sens. Actuator B 230, 46–53 (2016)CrossRef J. Tan, J. Chen, K. Liu, X. Huang, Synthesis of porous α-Fe2O3 microrods via insitu decomposition of FeC2O4 precursor for ultra-fast responding and recovering ethanol gas sensor. Sens. Actuator B 230, 46–53 (2016)CrossRef
17.
go back to reference A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi, L. Vanzetti, C. Malagu, G. Zonta, Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16, 296 (2016)CrossRef A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi, L. Vanzetti, C. Malagu, G. Zonta, Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16, 296 (2016)CrossRef
18.
go back to reference M.F. Afsar, M.A. Rafiq, A.I.Y. Tok, Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Adv. 7, 21556–21566 (2017)CrossRef M.F. Afsar, M.A. Rafiq, A.I.Y. Tok, Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Adv. 7, 21556–21566 (2017)CrossRef
19.
go back to reference A. Giberti, et al., Tin(IV) sulfide nanorods as a new gas sensing material. Sens. Actuator B 223, 827–833 (2016)CrossRef A. Giberti, et al., Tin(IV) sulfide nanorods as a new gas sensing material. Sens. Actuator B 223, 827–833 (2016)CrossRef
20.
go back to reference H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)CrossRef H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)CrossRef
21.
go back to reference M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski, Chemical deposition of tin(II) sulphide thin films. Thin Solid Films 173, 53–58 (1989)CrossRef M. Ristov, G. Sinadinovski, I. Grozdanov, M. Mitreski, Chemical deposition of tin(II) sulphide thin films. Thin Solid Films 173, 53–58 (1989)CrossRef
22.
go back to reference S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)CrossRef S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)CrossRef
23.
go back to reference A. Giberti, D. Casotti, G. Cruciani, B. Fabbri, A. Gaiardo, V. Guidi, C. Malagu, G. Zonta, S. Gherardi, Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens. Actuators B 207, 504–510 (2015)CrossRef A. Giberti, D. Casotti, G. Cruciani, B. Fabbri, A. Gaiardo, V. Guidi, C. Malagu, G. Zonta, S. Gherardi, Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens. Actuators B 207, 504–510 (2015)CrossRef
24.
go back to reference S. Bandyopadhyay, B. Chatterjee, P. Nag, A. Bandyopadhyay, Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. CLEAN–Soil Air Water 43(8), 1121–1127 (2015)CrossRef S. Bandyopadhyay, B. Chatterjee, P. Nag, A. Bandyopadhyay, Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. CLEAN–Soil Air Water 43(8), 1121–1127 (2015)CrossRef
25.
go back to reference S.P. Wang, C.H. Wu, C.C. Hong, MoS2 nanosensors fabricated by dielectrophoretic assembly for ultrasensitive and rapid sensing of volatile organic compounds. Sensors 2015, 1–4 (2015) S.P. Wang, C.H. Wu, C.C. Hong, MoS2 nanosensors fabricated by dielectrophoretic assembly for ultrasensitive and rapid sensing of volatile organic compounds. Sensors 2015, 1–4 (2015)
26.
go back to reference A.A. Sagade, R. Sharma, Copper sulphide (Cu2S) as an ammonia gas sensor working at room temperature. Sens. Actuators B 133, 135–143 (2008)CrossRef A.A. Sagade, R. Sharma, Copper sulphide (Cu2S) as an ammonia gas sensor working at room temperature. Sens. Actuators B 133, 135–143 (2008)CrossRef
27.
go back to reference A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS nanomaterial. Indian J. Chem. Sect. A 54, 155–160 (2015) A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS nanomaterial. Indian J. Chem. Sect. A 54, 155–160 (2015)
28.
go back to reference J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)CrossRef J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)CrossRef
29.
go back to reference J. Cai, Z. Li, P.K. Shen, Porous SnS nnaorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces 4, 4093–4098 (2012)CrossRef J. Cai, Z. Li, P.K. Shen, Porous SnS nnaorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces 4, 4093–4098 (2012)CrossRef
30.
go back to reference H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)CrossRef H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)CrossRef
31.
go back to reference Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)CrossRef Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)CrossRef
32.
go back to reference Y. Li, H. Huaqing, J. Tu, Nanostructured SnS/carbon composite for supercapacitor. Mater. Lett. 21, 1785–1787 (2009)CrossRef Y. Li, H. Huaqing, J. Tu, Nanostructured SnS/carbon composite for supercapacitor. Mater. Lett. 21, 1785–1787 (2009)CrossRef
33.
go back to reference A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv. 20(4), 10358–10366 (2014)CrossRef A.M. Tripathi, S. Mitra, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv. 20(4), 10358–10366 (2014)CrossRef
34.
go back to reference J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liua, G. Zoua, Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2, 1699–1703 (2010)CrossRef J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liua, G. Zoua, Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2, 1699–1703 (2010)CrossRef
35.
go back to reference S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, M.A. More, Vapor–liquid–solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 6, 2018–2025 (2014)CrossRef S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, M.A. More, Vapor–liquid–solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 6, 2018–2025 (2014)CrossRef
36.
go back to reference W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)CrossRef W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)CrossRef
37.
go back to reference M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compd. 492, 570–575 (2010)CrossRef M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compd. 492, 570–575 (2010)CrossRef
39.
go back to reference C.R. Patra, A. Odani, V.G. Pol, D. Aurbach, A. Gedanken, Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. J. Solid State Electrochem. 11, 186 (2007)CrossRef C.R. Patra, A. Odani, V.G. Pol, D. Aurbach, A. Gedanken, Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. J. Solid State Electrochem. 11, 186 (2007)CrossRef
40.
go back to reference B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)CrossRef B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)CrossRef
41.
go back to reference S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, E. Mohandas, Synthesis and characterization of SnS nanosheets through simple chemical route. Mater. Lett. 65(8), 1148–1150 (2011)CrossRef S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, E. Mohandas, Synthesis and characterization of SnS nanosheets through simple chemical route. Mater. Lett. 65(8), 1148–1150 (2011)CrossRef
42.
go back to reference A. Gaiardo, P. Bellutti, S. Gherardi, G. Zonta, B. Fabbri, A. Giberti, V. Guidi, C. Malagu, Tin(IV) sulfide chemoresistivity: a possible new gas sensing material, XVIII AISEM Annual Conference 978-1-4799-8591-3 (2015) A. Gaiardo, P. Bellutti, S. Gherardi, G. Zonta, B. Fabbri, A. Giberti, V. Guidi, C. Malagu, Tin(IV) sulfide chemoresistivity: a possible new gas sensing material, XVIII AISEM Annual Conference 978-1-4799-8591-3 (2015)
43.
go back to reference H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013) H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013)
44.
go back to reference N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRef N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRef
45.
go back to reference W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang, P. Wei, Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17, 2918–2924 (2006)CrossRef W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang, P. Wei, Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17, 2918–2924 (2006)CrossRef
46.
go back to reference J. Ge, W.J. Jin, H. Zhang, X. Wang, Q. Peng, Y.D. Li, High ethanol sensitive SnO2 microspheres. Sens. Actuator B 113, 937–943 (2006)CrossRef J. Ge, W.J. Jin, H. Zhang, X. Wang, Q. Peng, Y.D. Li, High ethanol sensitive SnO2 microspheres. Sens. Actuator B 113, 937–943 (2006)CrossRef
Metadata
Title
Growth of SnS nanoparticles and its ability as ethanol gas sensor
Authors
Chandan Rana
Swades Ranjan Bera
Satyajit Saha
Publication date
02-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 3/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0473-3

Other articles of this Issue 3/2019

Journal of Materials Science: Materials in Electronics 3/2019 Go to the issue