Skip to main content
Top
Published in: Neural Computing and Applications 16/2020

16-01-2020 | Original Article

Heartbeat classification by using a convolutional neural network trained with Walsh functions

Authors: Zümray Dokur, Tamer Ölmez

Published in: Neural Computing and Applications | Issue 16/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

From recent studies, it is observed that convolutional neural networks are proved to be extremely successful in classification problems. Accurate and fast classification of electrocardiogram (ECG) beats is a crucial step in the implementation of real-time arrhythmia diagnosis systems. In this study, convolutional neural networks are employed to classify eleven different ECG beat types in the MIT-BIH arrhythmia database. We aimed to implement a computer-aided mobile diagnosis system equipped with artificial intelligence that detects the classes of heartbeats by visual inspection of the ECG records in the manner as the cardiologists do. Since doctors make their decisions basing heavily on the 2D visual appearances of the ECG signals without doing numerical calculations on 1D time samples, 2D images of 1D ECG records were given to the classifier as the input data. It would not be surprising that the structure of the network classifying 2D ECG data has to be larger than the one used to classify 1D ECG signals. The small size of a neural network is an important property for real-time use of the system. In this study, smaller network structures that provide high performances using the Walsh functions (WF), and drawbacks of converting 1D signals to 2D images have been investigated. The network structures using the WF during the training stage have been applied to different databases and successful results have been obtained. Classification results and sizes of the network structures are compared for the ECG beats in one dimension and in the form of 2D visuals. The training of ECG signals in the form of 2D visuals takes much longer time than that of the 1D signals. However, it is observed that training and testing times of both networks were quite fast. Moreover, average success rates of 99% were achieved for all beat types by using small-size networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alajlan N, Bazi Y, Melgani F, Malek S, Bencherif MA (2014) Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods. Signal Image Video Process 8:931–942CrossRef Alajlan N, Bazi Y, Melgani F, Malek S, Bencherif MA (2014) Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods. Signal Image Video Process 8:931–942CrossRef
2.
go back to reference Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez JL (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61:832–840CrossRef Alonso-Atienza F, Morgado E, Fernandez-Martinez L, Garcia-Alberola A, Rojo-Alvarez JL (2014) Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans Biomed Eng 61:832–840CrossRef
3.
go back to reference Javadi M, Arani SAAA, Sajedin A, Ebrahimpour R (2013) Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed Signal Process Control 8:289–296CrossRef Javadi M, Arani SAAA, Sajedin A, Ebrahimpour R (2013) Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed Signal Process Control 8:289–296CrossRef
4.
go back to reference Wang J, Ye Y, Pan X, Gao X (2015) Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed Signal Process Control 18:36–41CrossRef Wang J, Ye Y, Pan X, Gao X (2015) Parallel-type fractional zero-phase filtering for ECG signal denoising. Biomed Signal Process Control 18:36–41CrossRef
5.
go back to reference Yadav SK, Sinha R, Bora PK (2015) Electrocardiogram signal denoising using non-local wavelet transform domain filtering. IET Signal Process 9:88–96CrossRef Yadav SK, Sinha R, Bora PK (2015) Electrocardiogram signal denoising using non-local wavelet transform domain filtering. IET Signal Process 9:88–96CrossRef
6.
go back to reference Bono V, Mazomenos EB, Chen T, Rosengarten JA, Acharyya A, Maharatna K et al (2014) Development of an automated updated Selvester QRS scoring system using SWT-based QRS fractionation detection and classification. IEEE J Biomed Health Inform 18:193–204CrossRef Bono V, Mazomenos EB, Chen T, Rosengarten JA, Acharyya A, Maharatna K et al (2014) Development of an automated updated Selvester QRS scoring system using SWT-based QRS fractionation detection and classification. IEEE J Biomed Health Inform 18:193–204CrossRef
7.
go back to reference Phukpattaranont P (2015) QRS detection algorithm based on the quadratic filter. Expert Syst Appl 42:4867–4877CrossRef Phukpattaranont P (2015) QRS detection algorithm based on the quadratic filter. Expert Syst Appl 42:4867–4877CrossRef
8.
go back to reference De Chazal P, O’Dwyer M, Reilly M (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196–1206CrossRef De Chazal P, O’Dwyer M, Reilly M (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51:1196–1206CrossRef
9.
go back to reference Dima S-M, Panagiotou C, Mazomenos EB, Rosengarten JA, Maharatna K, Gialelis JV et al (2013) On the detection of myocadial scar based on ECG/VCG analysis. IEEE Trans Biomed Eng 60:3399–3409CrossRef Dima S-M, Panagiotou C, Mazomenos EB, Rosengarten JA, Maharatna K, Gialelis JV et al (2013) On the detection of myocadial scar based on ECG/VCG analysis. IEEE Trans Biomed Eng 60:3399–3409CrossRef
10.
go back to reference De Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 53:2535–2543CrossRef De Chazal P, Reilly RB (2006) A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 53:2535–2543CrossRef
11.
go back to reference Kutlu Y, Kuntalp D (2012) Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Progr Biomed 105:257–267CrossRef Kutlu Y, Kuntalp D (2012) Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput Methods Progr Biomed 105:257–267CrossRef
12.
go back to reference Yang H, Kan C, Liu G, Chen Y (2013) Spatiotemporal differentiation of myocardial infarctions. IEEE Trans Autom Sci Eng 10:938–947CrossRef Yang H, Kan C, Liu G, Chen Y (2013) Spatiotemporal differentiation of myocardial infarctions. IEEE Trans Autom Sci Eng 10:938–947CrossRef
13.
go back to reference de Lannoy G, Francois D, Delbeke J, Verleysen M (2012) Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans Biomed Eng 59:241–247CrossRef de Lannoy G, Francois D, Delbeke J, Verleysen M (2012) Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans Biomed Eng 59:241–247CrossRef
14.
go back to reference Chang P-C, Lin J-J, Hsieh J-C, Weng J (2012) Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl Soft Comput 12:3165–3175CrossRef Chang P-C, Lin J-J, Hsieh J-C, Weng J (2012) Myocardial infarction classification with multi-lead ECG using hidden Markov models and Gaussian mixture models. Appl Soft Comput 12:3165–3175CrossRef
15.
go back to reference Martis RJ, Acharya UR, Min LC (2013) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control 8:437–448CrossRef Martis RJ, Acharya UR, Min LC (2013) ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control 8:437–448CrossRef
16.
go back to reference Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 18:1750–1761CrossRef Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 18:1750–1761CrossRef
17.
go back to reference Wang JS, Chiang WC, Hsu YL, Yang YTC (2013) ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116:38–45CrossRef Wang JS, Chiang WC, Hsu YL, Yang YTC (2013) ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116:38–45CrossRef
18.
go back to reference Dutta S, Chatterjee A, Munshi S (2010) Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med Eng Phys 32:1161–1169CrossRef Dutta S, Chatterjee A, Munshi S (2010) Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med Eng Phys 32:1161–1169CrossRef
19.
go back to reference Luz EJS, Nunes TM, de Albuquerque VHV, Papa JP, Menotti D (2013) ECG arrhythmia classification based on optimum-path forest. Expert Syst Appl 40:3561–3573CrossRef Luz EJS, Nunes TM, de Albuquerque VHV, Papa JP, Menotti D (2013) ECG arrhythmia classification based on optimum-path forest. Expert Syst Appl 40:3561–3573CrossRef
20.
go back to reference Melgani F, Bazi Y (2008) Detecting premature ventricular contractions in ECG signals with Gaussian processes. In: Computer in cardiology, pp 237–240 Melgani F, Bazi Y (2008) Detecting premature ventricular contractions in ECG signals with Gaussian processes. In: Computer in cardiology, pp 237–240
21.
go back to reference Sannino G, Pietro G (2018) A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Gen Comput Syst 86:446–455CrossRef Sannino G, Pietro G (2018) A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Gen Comput Syst 86:446–455CrossRef
22.
go back to reference Rahhal MM, Bazi Y, AlHichri H, Alajlan N, Melgani F, Yager RR (2016) Deep learning approach for active classification of electrocardiogram signals. Inf Sci 345:340–354CrossRef Rahhal MM, Bazi Y, AlHichri H, Alajlan N, Melgani F, Yager RR (2016) Deep learning approach for active classification of electrocardiogram signals. Inf Sci 345:340–354CrossRef
23.
go back to reference Jun TJ, Park HJ, Kim YH (2016) Premature ventricular contraction beat detection with deep neural networks. In: 15th IEEE international conference on machine learning and applications, pp 859–864 Jun TJ, Park HJ, Kim YH (2016) Premature ventricular contraction beat detection with deep neural networks. In: 15th IEEE international conference on machine learning and applications, pp 859–864
24.
go back to reference Zhou L, Van V, Qin X, Yuan C, Que D, Wang L (2016) Deep learning-based classification of massive electrocardiography data. In: IEEE advanced information management, communicates, electronic and automation control conference, pp 780–785 Zhou L, Van V, Qin X, Yuan C, Que D, Wang L (2016) Deep learning-based classification of massive electrocardiography data. In: IEEE advanced information management, communicates, electronic and automation control conference, pp 780–785
25.
go back to reference Pourbabaee B, Roshtkhariand MJ, Khorasani K (2017) Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 2017:1–10 Pourbabaee B, Roshtkhariand MJ, Khorasani K (2017) Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 2017:1–10
26.
go back to reference Wu Z, Ding X, Zhang G, Xu X, Wang X, Tao Y, Ju C (2016) A novel features learning method for ECG arrhythmias using deep belief networks. In: 6th international conference on digital home, pp 192–196 Wu Z, Ding X, Zhang G, Xu X, Wang X, Tao Y, Ju C (2016) A novel features learning method for ECG arrhythmias using deep belief networks. In: 6th international conference on digital home, pp 192–196
27.
go back to reference Assodiky H, Syarif I, Badriyah T (2017) Deep learning algorithm for arrhythmia detection. In: International electronics symposium on knowledge creation and intelligent computing, pp 26–32 Assodiky H, Syarif I, Badriyah T (2017) Deep learning algorithm for arrhythmia detection. In: International electronics symposium on knowledge creation and intelligent computing, pp 26–32
28.
go back to reference Xia Y, Zhang H, Xu L, Gao Z, Zhang H, Liu H, Li S (2018) An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE J Mag 6:16529–16538 Xia Y, Zhang H, Xu L, Gao Z, Zhang H, Liu H, Li S (2018) An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE J Mag 6:16529–16538
29.
go back to reference Ji J, Chen X, Luo C, Li P (2018) A deep multi-task learning Approach for ECG data analysis. In: IEEE EMBS international conference on biomedical & health informatics (BHI), pp 124–127 Ji J, Chen X, Luo C, Li P (2018) A deep multi-task learning Approach for ECG data analysis. In: IEEE EMBS international conference on biomedical & health informatics (BHI), pp 124–127
30.
go back to reference Paul T, Chakraborty A, Kundu S (2018) Hybrid shallow and deep learned feature mixture model for arrhythmia classification. In: Electric electronics, computer science, biomedical engineerings’ meeting (EBBT) Paul T, Chakraborty A, Kundu S (2018) Hybrid shallow and deep learned feature mixture model for arrhythmia classification. In: Electric electronics, computer science, biomedical engineerings’ meeting (EBBT)
31.
go back to reference Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef
32.
go back to reference Kachuee M, Fazeli S, Sarrafzadeh M (2018) ECG heartbeat classification: a deep transferable representation. In: IEEE international conference on healthcare informatics, pp 443–444 Kachuee M, Fazeli S, Sarrafzadeh M (2018) ECG heartbeat classification: a deep transferable representation. In: IEEE international conference on healthcare informatics, pp 443–444
33.
go back to reference Pyakillya B, Kazachenkoand N, Mikhailovsky N (2017) Deep learning for ECG classification. IOP Conf Ser J Phys 913:012004CrossRef Pyakillya B, Kazachenkoand N, Mikhailovsky N (2017) Deep learning for ECG classification. IOP Conf Ser J Phys 913:012004CrossRef
34.
go back to reference Wu Y, Yang F, Liu Y, Zha X, Yuan S (2018) A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. In: Conference proceedings: IEEE engineering in medicine and biology society, pp 324–327 Wu Y, Yang F, Liu Y, Zha X, Yuan S (2018) A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. In: Conference proceedings: IEEE engineering in medicine and biology society, pp 324–327
35.
go back to reference Jun TJ, Nguyen HM, Kang D, Kim D, Kim DY, Kim YH (2018) ECG arrhythmia classification using a 2-D convolutional neural network. Comput Vis Pattern Recognit. arXiv:1804.06812 Jun TJ, Nguyen HM, Kang D, Kim D, Kim DY, Kim YH (2018) ECG arrhythmia classification using a 2-D convolutional neural network. Comput Vis Pattern Recognit. arXiv:​1804.​06812
36.
go back to reference Rubin J, Abreu R, Ganguli A, Nelaturi S, Matei I, Sricharan K (2016) Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In: Computing in cardiology conference (CinC), pp 813–816 Rubin J, Abreu R, Ganguli A, Nelaturi S, Matei I, Sricharan K (2016) Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients. In: Computing in cardiology conference (CinC), pp 813–816
37.
go back to reference Park C, ChoiG, Kim JY, Kim S, Kim TJ, Min K, Jung KY, Chong J (2018) Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In: International conference on electronics, information, and communication Park C, ChoiG, Kim JY, Kim S, Kim TJ, Min K, Jung KY, Chong J (2018) Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In: International conference on electronics, information, and communication
38.
go back to reference Abbas W, Khan NA (2018) DeepMI: Deep learning for multiclass motor imagery classification. In: 40th annual international conference of the IEEE engineering in medicine and biology society, pp 219–222 Abbas W, Khan NA (2018) DeepMI: Deep learning for multiclass motor imagery classification. In: 40th annual international conference of the IEEE engineering in medicine and biology society, pp 219–222
40.
go back to reference Hur T, Bang J, Huynh-The T, Lee J, Kim J-I, Lee S (2018) Iss2Image: a novel signal-encoding technique for CNN-based human activity recognition. Sensors 18:3910CrossRef Hur T, Bang J, Huynh-The T, Lee J, Kim J-I, Lee S (2018) Iss2Image: a novel signal-encoding technique for CNN-based human activity recognition. Sensors 18:3910CrossRef
41.
go back to reference Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems, pp 1135–1143 Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems, pp 1135–1143
42.
go back to reference Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv:1510.00149 Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv:​1510.​00149
43.
44.
go back to reference Ba J, Caruana R, (2014) Do deep nets really need to be deep? In: Advances in neural information processing systems, 27 Ba J, Caruana R, (2014) Do deep nets really need to be deep? In: Advances in neural information processing systems, 27
45.
go back to reference Chen W, Wilson J, Tyree S, Weinberger K, Chen Y (2015) Compressing neural networks with the hashing trick. In: International conference on machine learning, pp 2285–2294 Chen W, Wilson J, Tyree S, Weinberger K, Chen Y (2015) Compressing neural networks with the hashing trick. In: International conference on machine learning, pp 2285–2294
46.
go back to reference Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol 20(3):45–50CrossRef Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol 20(3):45–50CrossRef
47.
go back to reference Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 18(6):1750–1761CrossRef Jiang W, Kong SG (2007) Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 18(6):1750–1761CrossRef
48.
go back to reference Ince T, Kiranyaz S, Gabbouj M (2009) A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56(5):1415–1426CrossRef Ince T, Kiranyaz S, Gabbouj M (2009) A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 56(5):1415–1426CrossRef
49.
go back to reference Kallas M, Francis C, Kanaan L, Merheb D, Honeine P, Hassan Amoud H (2012) Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. In: 19th international conference on telecommunications (ICT) Kallas M, Francis C, Kanaan L, Merheb D, Honeine P, Hassan Amoud H (2012) Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. In: 19th international conference on telecommunications (ICT)
50.
go back to reference Balouchestani M, Krishnan S (2014) Fast clustering algorithm for large ECG datasets based on CS theory in combination with PCA and K-NN methods. In: 36th annual international conference of the IEEE engineering in medicine and biology society Balouchestani M, Krishnan S (2014) Fast clustering algorithm for large ECG datasets based on CS theory in combination with PCA and K-NN methods. In: 36th annual international conference of the IEEE engineering in medicine and biology society
51.
go back to reference Chazal P, O’Dwyer M, Reilly BR (2004) Automatic classification of heartbeats using ECG morphology and heart beat interval features. IEEE Trans Biomed Eng 51(7):1196–1206CrossRef Chazal P, O’Dwyer M, Reilly BR (2004) Automatic classification of heartbeats using ECG morphology and heart beat interval features. IEEE Trans Biomed Eng 51(7):1196–1206CrossRef
52.
go back to reference Zhang Z, Dong J, Luo X, Choi K, Wu X (2014) Heartbeat classification using disease-specific feature selection. Comput Biol Med 46:79–89CrossRef Zhang Z, Dong J, Luo X, Choi K, Wu X (2014) Heartbeat classification using disease-specific feature selection. Comput Biol Med 46:79–89CrossRef
53.
go back to reference Martis RJ, Acharya UR, Adeli H, Prasad H, Tan JH, Chua KC, Too CL, Yeo SWJ, Tong L (2014) Computer aided diagnosis of atria larrhythmia using dimensionality reduction methods on transform domain representation. Biomed Signal Process Control 13:295–305CrossRef Martis RJ, Acharya UR, Adeli H, Prasad H, Tan JH, Chua KC, Too CL, Yeo SWJ, Tong L (2014) Computer aided diagnosis of atria larrhythmia using dimensionality reduction methods on transform domain representation. Biomed Signal Process Control 13:295–305CrossRef
56.
go back to reference Krizhevsky A (2009) Learning multiple layers of features from tiny images. Master’s thesis. Comput. Sci. Dept. Univ Toronto Krizhevsky A (2009) Learning multiple layers of features from tiny images. Master’s thesis. Comput. Sci. Dept. Univ Toronto
57.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
58.
go back to reference Wan L, Zeiler M, Zhang S, LeCun Y, Fergus R (2013) Regularization of neural networks using DropConnect. In: Proceedings of the 30th international conference on machine learning, PMLR, vol 28(3), pp 1058–1066 Wan L, Zeiler M, Zhang S, LeCun Y, Fergus R (2013) Regularization of neural networks using DropConnect. In: Proceedings of the 30th international conference on machine learning, PMLR, vol 28(3), pp 1058–1066
Metadata
Title
Heartbeat classification by using a convolutional neural network trained with Walsh functions
Authors
Zümray Dokur
Tamer Ölmez
Publication date
16-01-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 16/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04709-w

Other articles of this Issue 16/2020

Neural Computing and Applications 16/2020 Go to the issue

Premium Partner