Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2022

30-08-2022 | ORIGINAL ARTICLE

High efficiency and precision approach to milling stability prediction based on predictor-corrector linear multi-step method

Authors: Guohua Qin, Weida Lou, Huamin Wang, Zhuxi Wu

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Regenerative chatter is the most important factor affecting the stability of the milling process. It is core for suppressing chatter and improving production efficiency to accurately and efficiently identify the stable region of milling chatter. Therefore, according to the theory of predictor-corrector, three predictor–corrector methods (PCM) are, respectively, proposed for the milling stability region by applying the fourth-order Adams-Bashforth-Moulton formula, Simpson formula, and Hamming formula. Firstly, the regenerative chatter milling process is described as a second-order time-delay differential equation (DDE) with periodic coefficients. Thus, the forced vibration time can uniformly be discretized as a time node set. Secondly, the fourth-order Adams-Bashforth formula is used to predict the displacement at every time node, whereas the fourth-order Adams-Moulton formula can be employed to correct this predicted value. In addition, the fourth-order Simpson formula and Hamming formula can also correct the predicted value. Thus, a higher precision discrete prediction-correction expansion is constructed for the transformation of DDE into the state transition express. The Floquet theory can be depended on to present the judgment criterion of milling stability. Moreover, finally, under the same milling process parameters, comparisons of both the stability lobe curve and the local discrete error curve show that the PCM has a faster convergence rate than the 1st-SDM (first-order semi-discretization method) and 2nd-FDM (second-order full-discretization method). This shows that the PCM can obtain better computational accuracy under the same discrete number, whereas the PCM is significantly higher computational efficiency over 1st-SDM and 2nd-FDM. Meanwhile, considering the actual machining environment, helix angle effect and multiple modes effect of the tool are analyzed; experimental verification considering multiple modes with helix angle further indicates the applicability of the PCM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642CrossRef Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642CrossRef
2.
go back to reference Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, CambridgeCrossRef Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, CambridgeCrossRef
3.
go back to reference Faassen RPH, Van de WN, Oosterling JAJ, Nijmeijer H (2003) Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int J Mach Tools Manuf 43(14):1437–1446CrossRef Faassen RPH, Van de WN, Oosterling JAJ, Nijmeijer H (2003) Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int J Mach Tools Manuf 43(14):1437–1446CrossRef
4.
go back to reference Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35–44CrossRef Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1(1):35–44CrossRef
5.
go back to reference Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans R Soc A 359(1781):793–819MATHCrossRef Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans R Soc A 359(1781):793–819MATHCrossRef
6.
go back to reference Wiercigroch M, Budak E (2001) Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos Trans R Soc A 359(1781):663–693MATHCrossRef Wiercigroch M, Budak E (2001) Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos Trans R Soc A 359(1781):663–693MATHCrossRef
7.
go back to reference Li H, Shin YC (2006) A comprehensive dynamic end milling simulation model. Trans ASME J Manuf Sci Eng 128(1):86–95CrossRef Li H, Shin YC (2006) A comprehensive dynamic end milling simulation model. Trans ASME J Manuf Sci Eng 128(1):86–95CrossRef
8.
go back to reference Minis I, Yanushevsky R (1993) A new theoretical approach for the prediction of machine tool chatter in milling. Trans ASME J Manuf Sci Eng 115(1):1–8CrossRef Minis I, Yanushevsky R (1993) A new theoretical approach for the prediction of machine tool chatter in milling. Trans ASME J Manuf Sci Eng 115(1):1–8CrossRef
9.
go back to reference Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME J Manuf Sci Eng 125(3):416–422CrossRef Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME J Manuf Sci Eng 125(3):416–422CrossRef
10.
go back to reference Davies MA, Pratt JR, Dutterer BS (2000) The stability of low radial immersion milling. CIRP Ann Manuf Technol 49(1):37–40CrossRef Davies MA, Pratt JR, Dutterer BS (2000) The stability of low radial immersion milling. CIRP Ann Manuf Technol 49(1):37–40CrossRef
11.
go back to reference Davies MA, Pratt JR, Dutterer BS (2002) Stability prediction for low radial immersion milling. Trans ASME J Manuf Sci Eng 124(2):217–225CrossRef Davies MA, Pratt JR, Dutterer BS (2002) Stability prediction for low radial immersion milling. Trans ASME J Manuf Sci Eng 124(2):217–225CrossRef
12.
go back to reference Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362CrossRef Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362CrossRef
13.
go back to reference Merdol S, Altintas Y (2004) Multi-frequency solution of chatter stability for low immersion milling. Trans ASME J Manuf Sci Eng 126(3):459–466CrossRef Merdol S, Altintas Y (2004) Multi-frequency solution of chatter stability for low immersion milling. Trans ASME J Manuf Sci Eng 126(3):459–466CrossRef
14.
go back to reference Altintas Y, Lee P (1998) Mechanics and dynamics of ball end milling. Trans ASME J Manuf Sci Eng 120(4):684–692CrossRef Altintas Y, Lee P (1998) Mechanics and dynamics of ball end milling. Trans ASME J Manuf Sci Eng 120(4):684–692CrossRef
15.
go back to reference Altintas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. Trans ASME J Manuf Sci Eng 121(2):173–178CrossRef Altintas Y, Engin S, Budak E (1999) Analytical stability prediction and design of variable pitch cutters. Trans ASME J Manuf Sci Eng 121(2):173–178CrossRef
16.
go back to reference Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C 44(3):717–723MathSciNetCrossRef Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C 44(3):717–723MathSciNetCrossRef
17.
go back to reference Turner S, Merdol D, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47(9):1410–1416CrossRef Turner S, Merdol D, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47(9):1410–1416CrossRef
18.
go back to reference Ko JH, Altintas Y (2007) Dynamics and stability of plunge milling operations. Trans ASME J Manuf Sci Eng 129(1):32–40CrossRef Ko JH, Altintas Y (2007) Dynamics and stability of plunge milling operations. Trans ASME J Manuf Sci Eng 129(1):32–40CrossRef
19.
go back to reference Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. Trans ASME J Manuf Sci Eng 125:220–225CrossRef Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. Trans ASME J Manuf Sci Eng 125:220–225CrossRef
21.
go back to reference Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61:117–141MathSciNetMATHCrossRef Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61:117–141MathSciNetMATHCrossRef
22.
go back to reference Insperger T, Stepan G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341CrossRef Insperger T, Stepan G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341CrossRef
23.
go back to reference Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509CrossRef
24.
go back to reference Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932CrossRef
25.
go back to reference Wan M, Zhang WH, Dang JW, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tools Manuf 50(1):29–41CrossRef Wan M, Zhang WH, Dang JW, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tools Manuf 50(1):29–41CrossRef
26.
go back to reference Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62(1):61–66CrossRef Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62(1):61–66CrossRef
27.
go back to reference Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48CrossRef Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48CrossRef
28.
go back to reference Sun YX, Xiong ZH (2017) High-order full-discretization method using Lagrange interpolation for stability analysis of turning processes with stiffness variation. J Sound Vib 386:50–64CrossRef Sun YX, Xiong ZH (2017) High-order full-discretization method using Lagrange interpolation for stability analysis of turning processes with stiffness variation. J Sound Vib 386:50–64CrossRef
29.
go back to reference Ozoegwu CG, Omenyi SN (2016) Third-order least squares modelling of milling state term for improved computation of stability boundaries. Prod Manuf Res 4(1):46–64 Ozoegwu CG, Omenyi SN (2016) Third-order least squares modelling of milling state term for improved computation of stability boundaries. Prod Manuf Res 4(1):46–64
30.
go back to reference Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9CrossRef Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9CrossRef
31.
go back to reference Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9–12):2357–2368CrossRef Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2017) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9–12):2357–2368CrossRef
32.
go back to reference Tang XW, Peng FY, Yan R, Gong YH, Li X (2016) An effective time domain model for milling stability prediction simultaneously considering multiple modes and cross-frequency response function effect. Int J Adv Manuf Technol 86(1):1037–1054CrossRef Tang XW, Peng FY, Yan R, Gong YH, Li X (2016) An effective time domain model for milling stability prediction simultaneously considering multiple modes and cross-frequency response function effect. Int J Adv Manuf Technol 86(1):1037–1054CrossRef
33.
go back to reference Zhou K, Zhang JF, Xu C, Feng PF, Wu ZJ (2018) Effects of helix angle and multi-mode on the milling stability prediction using full-discretization method. Precis Eng 54:39–50CrossRef Zhou K, Zhang JF, Xu C, Feng PF, Wu ZJ (2018) Effects of helix angle and multi-mode on the milling stability prediction using full-discretization method. Precis Eng 54:39–50CrossRef
34.
go back to reference Zhang XJ, Xiong CH, Ding Y, Ding H (2017) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol 89(9):2535–2544CrossRef Zhang XJ, Xiong CH, Ding Y, Ding H (2017) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol 89(9):2535–2544CrossRef
35.
go back to reference Li MZ, Zhang GJ, Huang Y (2013) Complete discretization scheme for milling stability prediction. Nonlinear Dyn 71(1–2):187–199MathSciNetCrossRef Li MZ, Zhang GJ, Huang Y (2013) Complete discretization scheme for milling stability prediction. Nonlinear Dyn 71(1–2):187–199MathSciNetCrossRef
36.
go back to reference Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. Trans ASME J Manuf Sci Eng 133(3):031005CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. Trans ASME J Manuf Sci Eng 133(3):031005CrossRef
37.
go back to reference Niu JB, Ding Y, Zhu LM, Ding H (2014) Runge-Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304MathSciNetMATHCrossRef Niu JB, Ding Y, Zhu LM, Ding H (2014) Runge-Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304MathSciNetMATHCrossRef
38.
go back to reference Olvera D, Elías-Zúñiga A, Martínez-Alfaro H, De Lacallec LL, Rodrígueza CA, Campa FJ (2017) Determination of the stability lobes in milling operations based on homotopy and simulated annealing techniques. Mechatronics 24(3):177–185CrossRef Olvera D, Elías-Zúñiga A, Martínez-Alfaro H, De Lacallec LL, Rodrígueza CA, Campa FJ (2017) Determination of the stability lobes in milling operations based on homotopy and simulated annealing techniques. Mechatronics 24(3):177–185CrossRef
39.
go back to reference Zhang Z, Li HG, Meng G (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47CrossRef Zhang Z, Li HG, Meng G (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47CrossRef
40.
go back to reference Qin CJ, Tao JF, Liu CL (2019) A novel stability prediction method for milling operations using the holistic-interpolation scheme. Proc IME C J Mech Eng Sci 233(13):4463–4475CrossRef Qin CJ, Tao JF, Liu CL (2019) A novel stability prediction method for milling operations using the holistic-interpolation scheme. Proc IME C J Mech Eng Sci 233(13):4463–4475CrossRef
41.
go back to reference Dai YB, Li HK, Xing X, Hao B (2018) Prediction of chatter stability for milling process using precise integration method. Precis Eng 52:152–157CrossRef Dai YB, Li HK, Xing X, Hao B (2018) Prediction of chatter stability for milling process using precise integration method. Precis Eng 52:152–157CrossRef
42.
go back to reference Dong XF, Qiu ZZ (2020) Stability analysis in milling process based on updated numerical integration method. Mech Syst Signal Process 137:106435CrossRef Dong XF, Qiu ZZ (2020) Stability analysis in milling process based on updated numerical integration method. Mech Syst Signal Process 137:106435CrossRef
43.
go back to reference Lou WD, Qin GH, Zuo DW (2021) Investigation on Cotes-formula-based prediction method and its experimental verification of milling stability. J Manuf Process 64:1077–1088CrossRef Lou WD, Qin GH, Zuo DW (2021) Investigation on Cotes-formula-based prediction method and its experimental verification of milling stability. J Manuf Process 64:1077–1088CrossRef
44.
go back to reference Wu Y, You YP, Jiang JJ (2020) New predictor-corrector methods based on piecewise polynomial interpolation for milling stability prediction. Mach Sci Technol 24(5):688–718CrossRef Wu Y, You YP, Jiang JJ (2020) New predictor-corrector methods based on piecewise polynomial interpolation for milling stability prediction. Mach Sci Technol 24(5):688–718CrossRef
45.
go back to reference Stoer J, Bulirsch R (2013) Introduction to numerical analysis. Springer Science & Business Media, LondonMATH Stoer J, Bulirsch R (2013) Introduction to numerical analysis. Springer Science & Business Media, LondonMATH
46.
go back to reference Mann BP, Young KA, Schmitz TL, Dilley DN (2005) Simultaneous stability and surface location error predictions in milling. Trans ASME J Manuf Sci Eng 127(3):446–453CrossRef Mann BP, Young KA, Schmitz TL, Dilley DN (2005) Simultaneous stability and surface location error predictions in milling. Trans ASME J Manuf Sci Eng 127(3):446–453CrossRef
47.
go back to reference Bayly PV, Mann BP, Schmitz TL, Peters DA, Stepan G (2002) Insperger T (2002) Effects of radial immersion and cutting direction on chatter instability in end-milling. ASME IMECE 3641:351–363 Bayly PV, Mann BP, Schmitz TL, Peters DA, Stepan G (2002) Insperger T (2002) Effects of radial immersion and cutting direction on chatter instability in end-milling. ASME IMECE 3641:351–363
48.
go back to reference Zatarain M, Munoa J, Peigne G, Insperger T (2006) Analysis of the influence of mill helix angle on chatter stability. CIRP Ann 55(1):365–368CrossRef Zatarain M, Munoa J, Peigne G, Insperger T (2006) Analysis of the influence of mill helix angle on chatter stability. CIRP Ann 55(1):365–368CrossRef
49.
go back to reference Mann BP, Edes BT, Easley SJ, Young KA, Ma K (2008) Chatter vibration and surface location error prediction for helical end mills. Int J Mach Tools Manuf 48(3–4):350–361CrossRef Mann BP, Edes BT, Easley SJ, Young KA, Ma K (2008) Chatter vibration and surface location error prediction for helical end mills. Int J Mach Tools Manuf 48(3–4):350–361CrossRef
Metadata
Title
High efficiency and precision approach to milling stability prediction based on predictor-corrector linear multi-step method
Authors
Guohua Qin
Weida Lou
Huamin Wang
Zhuxi Wu
Publication date
30-08-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2022
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-09952-0

Other articles of this Issue 3-4/2022

The International Journal of Advanced Manufacturing Technology 3-4/2022 Go to the issue

Premium Partners