Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2017

08-05-2017 | Review Paper

High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows

Authors: Yu Lv, Matthias Ihme

Published in: Acta Mechanica Sinica | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zeldovich, Y.A., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) Zeldovich, Y.A., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)
2.
go back to reference Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993) Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993)
3.
go back to reference Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975) Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)
4.
go back to reference Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)CrossRef Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)CrossRef
5.
go back to reference Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017) Ma, P.C., Lv, Y., Ihme, M.: An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows. J. Comput. Phys. 340, 330–357 (2017)
7.
go back to reference Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)CrossRef Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)CrossRef
8.
go back to reference Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)CrossRef Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)CrossRef
9.
go back to reference Pintgen, F., Eckett, C.A., Austin, J.M., et al.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)CrossRef Pintgen, F., Eckett, C.A., Austin, J.M., et al.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)CrossRef
10.
go back to reference Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M., et al.: Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 2117–2126 (2015)CrossRef Maley, L., Bhattacharjee, R., Lau-Chapdelaine, S.M., et al.: Influence of hydrodynamic instabilities on the propagation mechanism of fast flames. Proc. Combust. Inst. 35, 2117–2126 (2015)CrossRef
11.
go back to reference Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)CrossRef Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)CrossRef
12.
go back to reference Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH
13.
go back to reference Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)MathSciNetCrossRefMATH Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)MathSciNetCrossRefMATH
14.
go back to reference Klöckner, A., Warburton, T., Bridge, J., et al.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228, 7863–7882 (2009)MathSciNetCrossRefMATH Klöckner, A., Warburton, T., Bridge, J., et al.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228, 7863–7882 (2009)MathSciNetCrossRefMATH
15.
go back to reference Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, America (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, America (1973)
16.
go back to reference Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)MathSciNetCrossRefMATH Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)MathSciNetCrossRefMATH
17.
go back to reference Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)MathSciNetCrossRefMATH Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)MathSciNetCrossRefMATH
18.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. J. Sci. Comp. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. J. Sci. Comp. 52, 411–435 (1989)MathSciNetMATH
19.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefMATH
20.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefMATH
21.
go back to reference Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH
22.
go back to reference Arnold, D.N., Brezzi, F., Cockburn, B., et al.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH Arnold, D.N., Brezzi, F., Cockburn, B., et al.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH
23.
go back to reference Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH
24.
go back to reference Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH
25.
go back to reference Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 197–208 (2000) Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In: Cockburn, B., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin, 197–208 (2000)
26.
go back to reference Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)MathSciNetCrossRefMATH Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30, 1806–1824 (2008)MathSciNetCrossRefMATH
27.
go back to reference Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetCrossRefMATH Hartmann, R., Houston, P.: An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227, 9670–9685 (2008)MathSciNetCrossRefMATH
28.
go back to reference Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)MathSciNetCrossRefMATH Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci. Comput. 34, 260–286 (2008)MathSciNetCrossRefMATH
29.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)
30.
31.
go back to reference Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRefMATH Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)CrossRefMATH
32.
go back to reference Rusanov, V.V.: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961) Rusanov, V.V.: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267–279 (1961)
33.
go back to reference Ma, P.C., Lv, Y., Ihme, M.: Discontinuous Galerkin scheme for turbulent flow simulations. Annual Research Briefs, Center for Turbulence Research, 225–236 (2015) Ma, P.C., Lv, Y., Ihme, M.: Discontinuous Galerkin scheme for turbulent flow simulations. Annual Research Briefs, Center for Turbulence Research, 225–236 (2015)
34.
go back to reference Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)MathSciNetCrossRef Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)MathSciNetCrossRef
35.
go back to reference Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefMATH
36.
go back to reference Wang, C., Zhang, X., Shu, C.-W., et al.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH Wang, C., Zhang, X., Shu, C.-W., et al.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefMATH
37.
go back to reference Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121, 545–563 (2012)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121, 545–563 (2012)MathSciNetCrossRefMATH
38.
39.
go back to reference Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA 2006-112 (2006) Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA 2006-112 (2006)
40.
go back to reference Krivodonova, L., Xin, J., Remacle, J.-F., et al.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH Krivodonova, L., Xin, J., Remacle, J.-F., et al.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH
41.
go back to reference Vuik, M.J., Ryan, J.K.: Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)MathSciNetCrossRefMATH Vuik, M.J., Ryan, J.K.: Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)MathSciNetCrossRefMATH
42.
go back to reference Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)MathSciNetCrossRefMATH Lv, Y., See, Y.C., Ihme, M.: An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods. J. Comput. Phys. 322, 448–472 (2016)MathSciNetCrossRefMATH
44.
go back to reference Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris, Ser. I 346, 801–806 (2008)MathSciNetCrossRefMATH Guermond, J.-L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris, Ser. I 346, 801–806 (2008)MathSciNetCrossRefMATH
45.
go back to reference Lax, P.D.: Shock waves and entropy. In: Zarantonello E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York and London, 603–634 (1971) Lax, P.D.: Shock waves and entropy. In: Zarantonello E.H. (ed.) Contributions to Nonlinear Functional Analysis. Academic Press, New York and London, 603–634 (1971)
47.
go back to reference Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)MathSciNetCrossRefMATH Luo, H., Baum, J.D., Löhner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)MathSciNetCrossRefMATH
48.
go back to reference Zhu, J., Zhong, X., Shu, C.-W., et al.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)MathSciNetCrossRefMATH Zhu, J., Zhong, X., Shu, C.-W., et al.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)MathSciNetCrossRefMATH
49.
go back to reference Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)MathSciNetCrossRefMATH Hartmann, R.: Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 51, 1131–1156 (2006)MathSciNetCrossRefMATH
50.
go back to reference Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA 2007-914 (2007) Nguyen, N.C., Persson, P.-O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA 2007-914 (2007)
51.
go back to reference Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I formulation. J. Comput. Phys. 229, 1810–1827 (2010)MathSciNetCrossRefMATH Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I formulation. J. Comput. Phys. 229, 1810–1827 (2010)MathSciNetCrossRefMATH
52.
go back to reference Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef
53.
go back to reference Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 381, 129–163 (1996) Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 381, 129–163 (1996)
54.
go back to reference Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flows. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRefMATH Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flows. J. Comput. Phys. 219, 715–732 (2006)MathSciNetCrossRefMATH
56.
go back to reference Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry 3, 83–90 (1991) Sjunnesson, A., Nelsson, C., Max, E.: LDA measurements of velocities and turbulence in a bluff body stabilized flame. Laser Anemometry 3, 83–90 (1991)
57.
go back to reference Sjunnesson, A., Olovsson, S., Sjoblom, B.: Validation rig—a tool for flame studies. In: 10th International Symposium on Air Breathing Engines. Nottingham, England, 385–393 (1991) Sjunnesson, A., Olovsson, S., Sjoblom, B.: Validation rig—a tool for flame studies. In: 10th International Symposium on Air Breathing Engines. Nottingham, England, 385–393 (1991)
58.
go back to reference Ghani, A., Poinsot, T., Gicquel, L., et al.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef Ghani, A., Poinsot, T., Gicquel, L., et al.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162, 4075–4083 (2015)CrossRef
59.
go back to reference Gamezo, V.N., Desbords, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation. Shock Waves 9, 11–17 (1999)CrossRef Gamezo, V.N., Desbords, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation. Shock Waves 9, 11–17 (1999)CrossRef
60.
go back to reference Ohyagi, S., Obara, T., Hoshi, S., et al.: Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12, 221–226 (2002)CrossRef Ohyagi, S., Obara, T., Hoshi, S., et al.: Diffraction and re-initiation of detonations behind a backward-facing step. Shock Waves 12, 221–226 (2002)CrossRef
61.
go back to reference Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H\(_2\)/O\(_2\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)CrossRef Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H\(_2\)/O\(_2\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444–474 (2012)CrossRef
62.
go back to reference Lv, Y., Ihme, M.: Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst. 35, 1963–1972 (2015)CrossRef Lv, Y., Ihme, M.: Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step. Proc. Combust. Inst. 35, 1963–1972 (2015)CrossRef
63.
go back to reference de Wiart, Carton C., Hillewaert, K., et al.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78, 335–354 (2015) de Wiart, Carton C., Hillewaert, K., et al.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78, 335–354 (2015)
64.
go back to reference Kanner, S., Persson, P.-O.: Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54, 101–112 (2015)CrossRef Kanner, S., Persson, P.-O.: Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54, 101–112 (2015)CrossRef
65.
go back to reference Beck, A.D., Bolemann, T., Flad, D., et al.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76, 522–548 (2014)MathSciNetCrossRef Beck, A.D., Bolemann, T., Flad, D., et al.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76, 522–548 (2014)MathSciNetCrossRef
66.
go back to reference Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)CrossRef
Metadata
Title
High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows
Authors
Yu Lv
Matthias Ihme
Publication date
08-05-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2017
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0664-9

Other articles of this Issue 3/2017

Acta Mechanica Sinica 3/2017 Go to the issue

Preface

Preface

Premium Partners