Skip to main content
Top
Published in: Journal of Scientific Computing 1/2014

01-07-2014

High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws

Authors: David C. Seal, Yaman Güçlü, Andrew J. Christlieb

Published in: Journal of Scientific Computing | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiderivative time integrators have a long history of development for ordinary differential equations, and yet to date, only a small subset of these methods have been explored as a tool for solving partial differential equations (PDEs). This large class of time integrators include all popular (multistage) Runge–Kutta as well as single-step (multiderivative) Taylor methods. (The latter are commonly referred to as Lax–Wendroff methods when applied to PDEs). In this work, we offer explicit multistage multiderivative time integrators for hyperbolic conservation laws. Like Lax–Wendroff methods, multiderivative integrators permit the evaluation of higher derivatives of the unknown in order to decrease the memory footprint and communication overhead. Like traditional Runge–Kutta methods, multiderivative integrators admit the addition of extra stages, which introduce extra degrees of freedom that can be used to increase the order of accuracy or modify the region of absolute stability. We describe a general framework for how these methods can be applied to two separate spatial discretizations: the discontinuous Galerkin (DG) method and the finite difference essentially non-oscillatory (FD-WENO) method. The two proposed implementations are substantially different: for DG we leverage techniques that are closely related to generalized Riemann solvers; for FD-WENO we construct higher spatial derivatives with central differences. Among multiderivative time integrators, we argue that multistage two-derivative methods have the greatest potential for multidimensional applications, because they only require the flux function and its Jacobian, which is readily available. Numerical results indicate that multiderivative methods are indeed competitive with popular strong stability preserving time integrators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
When applied to partial differential equations, Taylor methods are commonly referred to as Lax–Wendroff methods.
 
2
A finite difference method is conservative if the method satisfies \(\frac{d}{dt}\left( \sum _i q_i(t) \right) = 0\) on a periodic (or infinite) domain.
 
Literature
1.
go back to reference Bettis, D.G., Horn, M.K.: An optimal \((m+3)[m+4]\) Runge Kutta algorithm. In: Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I, vol. 14, pp. 133–140 (1976) Bettis, D.G., Horn, M.K.: An optimal \((m+3)[m+4]\) Runge Kutta algorithm. In: Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I, vol. 14, pp. 133–140 (1976)
2.
go back to reference Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)CrossRefMATHMathSciNet Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)CrossRefMATHMathSciNet
3.
go back to reference Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107–116 (1942) Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107–116 (1942)
5.
go back to reference Butcher, J.C.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996). Selected topics in numerical methods (Miskolc, 1994) Butcher, J.C.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996). Selected topics in numerical methods (Miskolc, 1994)
7.
go back to reference Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)CrossRefMATHMathSciNet Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)CrossRefMATHMathSciNet
9.
go back to reference Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2002)CrossRefMathSciNet Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2002)CrossRefMathSciNet
10.
go back to reference Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193(2), 563–594 (2004)CrossRefMATHMathSciNet Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193(2), 563–594 (2004)CrossRefMATHMathSciNet
11.
go back to reference Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)CrossRefMATHMathSciNet Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)CrossRefMATHMathSciNet
12.
go back to reference Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)CrossRefMATHMathSciNet Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)CrossRefMATHMathSciNet
13.
go back to reference Fehlberg, E.: Neue genauere Runge-Kutta-Formeln für Differentialgleichungen \(n\)-ter Ordnung. Z. Angew. Math. Mech. 40, 449–455 (1960)CrossRefMATHMathSciNet Fehlberg, E.: Neue genauere Runge-Kutta-Formeln für Differentialgleichungen \(n\)-ter Ordnung. Z. Angew. Math. Mech. 40, 449–455 (1960)CrossRefMATHMathSciNet
14.
go back to reference Fehlberg, E.: New high-order Runge-Kutta formulas with step size control for systems of first- and second-order differential equations. Z. Angew. Math. Mech. 44, T17–T29 (1964)CrossRefMATHMathSciNet Fehlberg, E.: New high-order Runge-Kutta formulas with step size control for systems of first- and second-order differential equations. Z. Angew. Math. Mech. 44, T17–T29 (1964)CrossRefMATHMathSciNet
15.
go back to reference Friedman, A.: A new proof and generalizations of the Cauchy-Kowalewski theorem. Trans. Am. Math. Soc. 98, 1–20 (1961)CrossRefMATH Friedman, A.: A new proof and generalizations of the Cauchy-Kowalewski theorem. Trans. Am. Math. Soc. 98, 1–20 (1961)CrossRefMATH
17.
go back to reference Gekeler, E., Widmann, R.: On the order conditions of Runge-Kutta methods with higher derivatives. Numer. Math. 50(2), 183–203 (1986)CrossRefMATHMathSciNet Gekeler, E., Widmann, R.: On the order conditions of Runge-Kutta methods with higher derivatives. Numer. Math. 50(2), 183–203 (1986)CrossRefMATHMathSciNet
18.
go back to reference Goeken, D., Johnson, O.: Fifth-order Runge-Kutta with higher order derivative approximations. In: Proceedings of the 15th Annual Conference of Applied Mathematics (Edmond, OK, 1999), Electron. J. Differ. Equ. Conf., vol. 2, pp. 1–9 (electronic). Southwest Texas State University, San Marcos, TX (1999) Goeken, D., Johnson, O.: Fifth-order Runge-Kutta with higher order derivative approximations. In: Proceedings of the 15th Annual Conference of Applied Mathematics (Edmond, OK, 1999), Electron. J. Differ. Equ. Conf., vol. 2, pp. 1–9 (electronic). Southwest Texas State University, San Marcos, TX (1999)
19.
go back to reference Goeken, D., Johnson, O.: Runge-Kutta with higher order derivative approximations. Appl. Numer. Math. 34(2–3), 207–218 (2000). Auckland numerical ordinary differential equations (Auckland, 1998) Goeken, D., Johnson, O.: Runge-Kutta with higher order derivative approximations. Appl. Numer. Math. 34(2–3), 207–218 (2000). Auckland numerical ordinary differential equations (Auckland, 1998)
20.
go back to reference Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25(1–2), 105–128 (2005)MATHMathSciNet Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25(1–2), 105–128 (2005)MATHMathSciNet
22.
go back to reference Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (electronic) (2001) Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (electronic) (2001)
23.
go back to reference Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. Springer, Berlin (1991)CrossRef Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. Springer, Berlin (1991)CrossRef
24.
go back to reference Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 1, 3rd edn. Springer, Berlin (2009) Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 1, 3rd edn. Springer, Berlin (2009)
25.
go back to reference Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods of ordinary differential equations. Computing (Arch. Elektron. Rechnen) 11(3), 287–303 (1973)MATHMathSciNet Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods of ordinary differential equations. Computing (Arch. Elektron. Rechnen) 11(3), 287–303 (1973)MATHMathSciNet
26.
go back to reference Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)MATHMathSciNet Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)MATHMathSciNet
27.
go back to reference Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)CrossRefMATHMathSciNet Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)CrossRefMATHMathSciNet
28.
go back to reference Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)CrossRefMATHMathSciNet Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)CrossRefMATHMathSciNet
29.
go back to reference Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)CrossRefMATH Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)CrossRefMATH
31.
go back to reference Kastlunger, K., Wanner, G.: On Turán type implicit Runge-Kutta methods. Computing (Arch. Elektron. Rechnen) 9, 317–325 (1972) Kastlunger, K., Wanner, G.: On Turán type implicit Runge-Kutta methods. Computing (Arch. Elektron. Rechnen) 9, 317–325 (1972)
32.
go back to reference Kastlunger, K.H., Wanner, G.: Runge Kutta processes with multiple nodes. Computing (Arch. Elektron. Rechnen) 9, 9–24 (1972)MATHMathSciNet Kastlunger, K.H., Wanner, G.: Runge Kutta processes with multiple nodes. Computing (Arch. Elektron. Rechnen) 9, 9–24 (1972)MATHMathSciNet
33.
go back to reference Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)CrossRefMathSciNet Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)CrossRefMathSciNet
37.
go back to reference LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH
38.
go back to reference Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)CrossRefMATHMathSciNet Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)CrossRefMATHMathSciNet
39.
go back to reference Lu, C., Qiu, J.: Simulations of shallow water equations with finite difference Lax-Wendroff weighted essentially non-oscillatory schemes. J. Sci. Comput. 47(3), 281–302 (2011)CrossRefMATHMathSciNet Lu, C., Qiu, J.: Simulations of shallow water equations with finite difference Lax-Wendroff weighted essentially non-oscillatory schemes. J. Sci. Comput. 47(3), 281–302 (2011)CrossRefMATHMathSciNet
40.
go back to reference Mitsui, T.: Runge-Kutta type integration formulas including the evaluation of the second derivative. I. Publ. Res. Inst. Math. Sci. 18(1), 325–364 (1982)CrossRefMATHMathSciNet Mitsui, T.: Runge-Kutta type integration formulas including the evaluation of the second derivative. I. Publ. Res. Inst. Math. Sci. 18(1), 325–364 (1982)CrossRefMATHMathSciNet
41.
go back to reference Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231(19), 6472–6494 (2012)CrossRefMATHMathSciNet Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231(19), 6472–6494 (2012)CrossRefMATHMathSciNet
42.
go back to reference Nguyen-Ba, T., Božić, V., Kengne, E., Vaillancourt, R.: Nine-stage multi-derivative Runge-Kutta method of order 12. Publ. Inst. Math. (Beograd) (N.S.) 86(100), 75–96 (2009)CrossRefMathSciNet Nguyen-Ba, T., Božić, V., Kengne, E., Vaillancourt, R.: Nine-stage multi-derivative Runge-Kutta method of order 12. Publ. Inst. Math. (Beograd) (N.S.) 86(100), 75–96 (2009)CrossRefMathSciNet
43.
go back to reference Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)CrossRefMATHMathSciNet Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)CrossRefMATHMathSciNet
44.
go back to reference Obreschkoff, N.: Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1940(4), 20 (1940) Obreschkoff, N.: Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1940(4), 20 (1940)
45.
go back to reference Ono, H., Yoshida, T.: Two-stage explicit Runge-Kutta type methods using derivatives. Jpn. J. Ind. Appl. Math. 21(3), 361–374 (2004)CrossRefMATHMathSciNet Ono, H., Yoshida, T.: Two-stage explicit Runge-Kutta type methods using derivatives. Jpn. J. Ind. Appl. Math. 21(3), 361–374 (2004)CrossRefMATHMathSciNet
46.
go back to reference Qiu, J.: A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes. J. Sci. Comput. 30(3), 345–367 (2007)CrossRefMATHMathSciNet Qiu, J.: A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes. J. Sci. Comput. 30(3), 345–367 (2007)CrossRefMATHMathSciNet
47.
go back to reference Qiu, J.: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Comput. Appl. Math. 200(2), 591–605 (2007)CrossRefMATHMathSciNet Qiu, J.: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Comput. Appl. Math. 200(2), 591–605 (2007)CrossRefMATHMathSciNet
48.
go back to reference Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)CrossRefMATHMathSciNet Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)CrossRefMATHMathSciNet
49.
go back to reference Qiu, J., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)CrossRefMATHMathSciNet Qiu, J., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)CrossRefMATHMathSciNet
50.
go back to reference Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
51.
53.
go back to reference Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)CrossRefMATHMathSciNet Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)CrossRefMATHMathSciNet
54.
go back to reference Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)MathSciNet Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)MathSciNet
55.
go back to reference Seal, D.C.: Discontinuous Galerkin methods for Vlasov models of plasma. Ph.D. thesis, Madison, WI, University of Wisconsin, Madison, WI (2012) Seal, D.C.: Discontinuous Galerkin methods for Vlasov models of plasma. Ph.D. thesis, Madison, WI, University of Wisconsin, Madison, WI (2012)
56.
go back to reference Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima Math. J. 1, 349–372 (1971)MATHMathSciNet Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima Math. J. 1, 349–372 (1971)MATHMathSciNet
57.
go back to reference Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)MATHMathSciNet Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)MATHMathSciNet
58.
go back to reference Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998) Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)
59.
go back to reference Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn. 17(2), 107–118 (2003)CrossRefMATHMathSciNet Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn. 17(2), 107–118 (2003)CrossRefMATHMathSciNet
60.
go back to reference Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)CrossRefMATHMathSciNet Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)CrossRefMATHMathSciNet
61.
go back to reference Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)CrossRefMATHMathSciNet Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)CrossRefMATHMathSciNet
62.
go back to reference Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)CrossRefMATHMathSciNet Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)CrossRefMATHMathSciNet
63.
go back to reference Stancu, D.D., Stroud, A.H.: Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math. Comput. 17, 384–394 (1963)CrossRefMATHMathSciNet Stancu, D.D., Stroud, A.H.: Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math. Comput. 17, 384–394 (1963)CrossRefMATHMathSciNet
64.
go back to reference Taube, A., Dumbser, M., Balsara, D.S., Munz, C.D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)CrossRefMATHMathSciNet Taube, A., Dumbser, M., Balsara, D.S., Munz, C.D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)CrossRefMATHMathSciNet
65.
go back to reference Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 609–618 (2002) Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 609–618 (2002)
66.
go back to reference Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715–736 (2005) Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715–736 (2005)
67.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999) Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999)
68.
go back to reference Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002) Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)
69.
go back to reference Toro, E.F., Titarev, V.A.: ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J. Comput. Phys. 202(1), 196–215 (2005) Toro, E.F., Titarev, V.A.: ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J. Comput. Phys. 202(1), 196–215 (2005)
70.
go back to reference Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005) Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005)
71.
go back to reference Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 30–37 (1950) Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 30–37 (1950)
73.
go back to reference Yoshida, T., Ono, H.: Two stage explicit Runge-Kutta type method using second and third derivatives. IPSJ J. 44(1), 82–87 (2003)MathSciNet Yoshida, T., Ono, H.: Two stage explicit Runge-Kutta type method using second and third derivatives. IPSJ J. 44(1), 82–87 (2003)MathSciNet
Metadata
Title
High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws
Authors
David C. Seal
Yaman Güçlü
Andrew J. Christlieb
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2014
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-013-9787-8

Other articles of this Issue 1/2014

Journal of Scientific Computing 1/2014 Go to the issue

Premium Partner