Skip to main content
Top
Published in: Journal of Scientific Computing 3/2016

28-01-2016

High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations

Authors: Sebastiano Boscarino, Francis Filbet, Giovanni Russo

Published in: Journal of Scientific Computing | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main purpose of the paper is to show how to use implicit–explicit Runge–Kutta methods in a much more general context than usually found in the literature, obtaining very effective schemes for a large class of problems. This approach gives a great flexibility, and allows, in many cases the construction of simple linearly implicit schemes without any Newton’s iteration. This is obtained by identifying the (possibly linear) dependence on the unknown of the system which generates the stiffness. Only the stiff dependence is treated implicitly, then making the whole method much simpler than fully implicit ones. The resulting schemes are denoted as semi-implicit R–K. We adopt several semi-implicit R–K methods up to order three. We illustrate the effectiveness of the new approach with many applications to reaction–diffusion, convection diffusion and nonlinear diffusion system of equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (2001)MathSciNetCrossRefMATH Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (2001)MathSciNetCrossRefMATH
2.
go back to reference Carpenter, M.H., Kennedy, C.A.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH Carpenter, M.H., Kennedy, C.A.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)MathSciNetCrossRefMATH
3.
go back to reference Chen, C.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with relaxation terms and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)MathSciNetCrossRefMATH Chen, C.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with relaxation terms and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)MathSciNetCrossRefMATH
4.
go back to reference Durran, D.R., Blossey, P.N.: Implicit–explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev. 140, 1307–1325 (2012)CrossRef Durran, D.R., Blossey, P.N.: Implicit–explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev. 140, 1307–1325 (2012)CrossRef
5.
6.
go back to reference Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis, Advances Theory Computational Mathematics, vol. 3, pp. 269–288. Nova Sci. Publ., Huntington, NY (2001) Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis, Advances Theory Computational Mathematics, vol. 3, pp. 269–288. Nova Sci. Publ., Huntington, NY (2001)
7.
go back to reference Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxations. J. Sci. Comput. 25, 129–155 (2005)MathSciNetMATH Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxations. J. Sci. Comput. 25, 129–155 (2005)MathSciNetMATH
8.
go back to reference Weller, H., Lock, S.J., Wood, N.: Runge–Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J. Comput. Phys. 252, 365–381 (2013)MathSciNetCrossRef Weller, H., Lock, S.J., Wood, N.: Runge–Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J. Comput. Phys. 252, 365–381 (2013)MathSciNetCrossRef
9.
go back to reference Hairer, E., Wanner, G.: Solving ordinary differential equation. II. Stiff and differential algebraic problems, Springer Series in Computational Mathematics, 14, Springer (second revised edition 1996), corrected second printing 2002 Hairer, E., Wanner, G.: Solving ordinary differential equation. II. Stiff and differential algebraic problems, Springer Series in Computational Mathematics, 14, Springer (second revised edition 1996), corrected second printing 2002
10.
go back to reference Higueras, I., Mantas, J.M., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)MathSciNetCrossRefMATH Higueras, I., Mantas, J.M., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)MathSciNetCrossRefMATH
11.
go back to reference Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed non equilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)MathSciNetCrossRefMATH Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed non equilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)MathSciNetCrossRefMATH
12.
go back to reference Boscarino, S., LeFloch, P.-G., Russo, G.: High-order asymptotic-preserving methods for fully non linear relaxation problems. SIAM J. Sci. Comput. 36, A377–A395 (2014)MathSciNetCrossRefMATH Boscarino, S., LeFloch, P.-G., Russo, G.: High-order asymptotic-preserving methods for fully non linear relaxation problems. SIAM J. Sci. Comput. 36, A377–A395 (2014)MathSciNetCrossRefMATH
13.
go back to reference Berthon, C., LeFloch, P.-G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. 82, 831–860 (2012)MathSciNetCrossRefMATH Berthon, C., LeFloch, P.-G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. 82, 831–860 (2012)MathSciNetCrossRefMATH
14.
go back to reference Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1–3), 439–456 (2003)MathSciNetCrossRefMATH Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1–3), 439–456 (2003)MathSciNetCrossRefMATH
15.
go back to reference Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)MathSciNetCrossRefMATH Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)MathSciNetCrossRefMATH
16.
go back to reference Giraldo, F.X., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier–Stokes equations: application to nonhydrostatic atmosphereric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)MathSciNetCrossRefMATH Giraldo, F.X., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier–Stokes equations: application to nonhydrostatic atmosphereric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)MathSciNetCrossRefMATH
17.
go back to reference Giraldo, F.X., Kelly, J.F., Costantinescu, E.M.: Implicit–explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5), B1162–B1194 (2013)MathSciNetCrossRefMATH Giraldo, F.X., Kelly, J.F., Costantinescu, E.M.: Implicit–explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5), B1162–B1194 (2013)MathSciNetCrossRefMATH
18.
go back to reference Araújo, A., Barbeiro, S., Serranho, P.: Stability of finite difference schemes for complex diffusion processes. SIAM J. Numer. Anal. 50, 1284–1296 (2012)MathSciNetCrossRefMATH Araújo, A., Barbeiro, S., Serranho, P.: Stability of finite difference schemes for complex diffusion processes. SIAM J. Numer. Anal. 50, 1284–1296 (2012)MathSciNetCrossRefMATH
19.
go back to reference Boscarino, S., Russo, G.: High-order asymptotic-preserving methods for nonlinear relaxation from hyperbolic systems to convection–diffusion equations. In: Submitted to Proceedings, High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013), March 18–22, Bordeaux (2013) Boscarino, S., Russo, G.: High-order asymptotic-preserving methods for nonlinear relaxation from hyperbolic systems to convection–diffusion equations. In: Submitted to Proceedings, High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013), March 18–22, Bordeaux (2013)
20.
go back to reference Boscarino, S., Bürger, R., Mulet, Pep, Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331 (2015)MathSciNetCrossRefMATH Boscarino, S., Bürger, R., Mulet, Pep, Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331 (2015)MathSciNetCrossRefMATH
21.
go back to reference Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation. I. Non-stiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)MATH Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation. I. Non-stiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)MATH
22.
go back to reference Ascher, U., Ruuth, S., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U., Ruuth, S., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
23.
go back to reference Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)MathSciNetCrossRefMATH Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)MathSciNetCrossRefMATH
24.
go back to reference Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)MathSciNetCrossRefMATH Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)MathSciNetCrossRefMATH
25.
go back to reference Boscarino, S., Russo, G.: Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51, 163–190 (2013)MathSciNetCrossRefMATH Boscarino, S., Russo, G.: Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51, 163–190 (2013)MathSciNetCrossRefMATH
26.
go back to reference Hairer, E., Lubich, C., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT Numer. Math. 28(3), 678–700 (1988)MathSciNetCrossRefMATH Hairer, E., Lubich, C., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT Numer. Math. 28(3), 678–700 (1988)MathSciNetCrossRefMATH
27.
go back to reference Filbet, F., Guo, R., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. Preprint (2015) Filbet, F., Guo, R., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. Preprint (2015)
28.
go back to reference Filbet, F., Rodrigues, L.M.: Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. Preprint (2015) Filbet, F., Rodrigues, L.M.: Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. Preprint (2015)
29.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006)MATH
30.
go back to reference Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH
31.
go back to reference Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)MathSciNetCrossRefMATH Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)MathSciNetCrossRefMATH
32.
33.
go back to reference Filbet, F., Rambaud, A.: Analysis of an asymptotic preserving scheme for relaxation systems. ESAIM Math. Model. Numer. Anal. 47, 609–633 (2013)MathSciNetCrossRefMATH Filbet, F., Rambaud, A.: Analysis of an asymptotic preserving scheme for relaxation systems. ESAIM Math. Model. Numer. Anal. 47, 609–633 (2013)MathSciNetCrossRefMATH
34.
go back to reference Zhang, K., Wong, J.C.F., Zhang, R.: Second-order implicit–explicit scheme for the Gray–Scott model. J. Comput. Appl. Math. 213, 559–581 (2008)MathSciNetCrossRefMATH Zhang, K., Wong, J.C.F., Zhang, R.: Second-order implicit–explicit scheme for the Gray–Scott model. J. Comput. Appl. Math. 213, 559–581 (2008)MathSciNetCrossRefMATH
35.
go back to reference Carrillo, J.A., Laurençot, Ph, Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness and long-time asymptotics. J. Differ. Equ. 247, 2209–2234 (2009)MathSciNetCrossRefMATH Carrillo, J.A., Laurençot, Ph, Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness and long-time asymptotics. J. Differ. Equ. 247, 2209–2234 (2009)MathSciNetCrossRefMATH
36.
go back to reference Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21, 148–154 (2008)MathSciNetCrossRefMATH Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21, 148–154 (2008)MathSciNetCrossRefMATH
37.
go back to reference Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34, 559–583 (2012)MathSciNetCrossRefMATH Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34, 559–583 (2012)MathSciNetCrossRefMATH
38.
go back to reference Bertozzi, A.L.: The mathematics of moving contact lines in thin liquid films. Not. AMS 45, 689–697 (1998)MathSciNetMATH Bertozzi, A.L.: The mathematics of moving contact lines in thin liquid films. Not. AMS 45, 689–697 (1998)MathSciNetMATH
39.
go back to reference Pareschi, L., Russo, G., Toscani, G.: A kinetic approximation to Hele–Shaw flow. C. R. Math., Acad. Sci. Paris, Ser. I 338(2), 178–182 (2004)MathSciNetCrossRefMATH Pareschi, L., Russo, G., Toscani, G.: A kinetic approximation to Hele–Shaw flow. C. R. Math., Acad. Sci. Paris, Ser. I 338(2), 178–182 (2004)MathSciNetCrossRefMATH
40.
go back to reference Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. XLIX, 85–123 (1996)MathSciNetCrossRefMATH Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. XLIX, 85–123 (1996)MathSciNetCrossRefMATH
41.
go back to reference Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)MathSciNetCrossRefMATH Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)MathSciNetCrossRefMATH
42.
go back to reference Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40, 375–390 (2009)MathSciNetCrossRefMATH Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40, 375–390 (2009)MathSciNetCrossRefMATH
Metadata
Title
High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations
Authors
Sebastiano Boscarino
Francis Filbet
Giovanni Russo
Publication date
28-01-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0168-y

Other articles of this Issue 3/2016

Journal of Scientific Computing 3/2016 Go to the issue

Premium Partner