Skip to main content
Top
Published in: Rare Metals 3/2018

13-03-2018

High-performance anode materials for Na-ion batteries

Authors: De-Liang Cheng, Li-Chun Yang, Min Zhu

Published in: Rare Metals | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to develop high-performance electrode materials for Na-ion batteries, which is critical for Na-ion batteries. This review provides a comprehensive overview of anode materials for Na-ion batteries based on Na-storage mechanism: insertion-based materials, alloy-based materials, conversion-based materials and organic composites. And we summarize the Na-storage mechanism of those anode materials and discuss their failure mechanism. Furthermore, the problems and challenges associated with those anodes are pointed out, and feasible strategies are proposed for designing high-performance anode materials. According to the current state of research, the search for suitable anode materials for Na-ion batteries is still challenging although substantial progress has been achieved. Nevertheless, we believe that high-performance Na-ion batteries would be promising for practical applications in large-scale energy storage systems in the near future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338.CrossRef Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338.CrossRef
[2]
go back to reference Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5(3):5884.CrossRef Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci. 2012;5(3):5884.CrossRef
[3]
go back to reference Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H. Update on anode materials for Na-ion batteries. J Mater Chem A. 2015;3(35):17899.CrossRef Kang H, Liu Y, Cao K, Zhao Y, Jiao L, Wang Y, Yuan H. Update on anode materials for Na-ion batteries. J Mater Chem A. 2015;3(35):17899.CrossRef
[4]
go back to reference Zheng S, Xue H, Pang H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater. 2017;7(18):1602733.CrossRef Zheng S, Xue H, Pang H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater. 2017;7(18):1602733.CrossRef
[5]
go back to reference Li B, Zheng MB, Xue HG, Pang H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chem Front. 2016;3(2):175.CrossRef Li B, Zheng MB, Xue HG, Pang H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chem Front. 2016;3(2):175.CrossRef
[6]
go back to reference Li B, Gu P, Feng YC, Zhang GX, Huang KS, Xue HG, Pang H. Ultrathin nickel–cobalt–phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater. 2017;27(12):11. Li B, Gu P, Feng YC, Zhang GX, Huang KS, Xue HG, Pang H. Ultrathin nickel–cobalt–phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater. 2017;27(12):11.
[7]
go back to reference Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A. 2016;4(48):19078.CrossRef Yan Y, Gu P, Zheng SS, Zheng MB, Pang H, Xue HG. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A. 2016;4(48):19078.CrossRef
[8]
go back to reference Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef Li C, Wang ZB, Wang Q, Gu DM. Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 2017;36(5):365.CrossRef
[9]
go back to reference Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.CrossRef Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.CrossRef
[10]
go back to reference Guo SH, Yu HJ, Jian ZL, Liu P, Zhu YB, Guo XW, Chen MW, Ishida M, Zhou HS. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. Chemsuschem. 2014;7(8):2115.CrossRef Guo SH, Yu HJ, Jian ZL, Liu P, Zhu YB, Guo XW, Chen MW, Ishida M, Zhou HS. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. Chemsuschem. 2014;7(8):2115.CrossRef
[11]
go back to reference Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114(23):11636.CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114(23):11636.CrossRef
[12]
go back to reference Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in Na x CoO2 bronzes. Solid State Ionics. 1981;3–4(1):165.CrossRef Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in Na x CoO2 bronzes. Solid State Ionics. 1981;3–4(1):165.CrossRef
[13]
go back to reference Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-Na x CoO2 phase diagram. Nat Mater. 2011;10(1):74.CrossRef Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-Na x CoO2 phase diagram. Nat Mater. 2011;10(1):74.CrossRef
[14]
go back to reference Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater. 2011;23(28):3155.CrossRef Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater. 2011;23(28):3155.CrossRef
[15]
go back to reference Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun. 2012;14(1):86.CrossRef Jian Z, Zhao L, Pan H, Hu YS, Li H, Chen W, Chen L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun. 2012;14(1):86.CrossRef
[16]
go back to reference Duan WC, Zhu ZQ, Li H, Hu Z, Zhang K, Cheng FY, Chen J. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A. 2014;2(23):8668.CrossRef Duan WC, Zhu ZQ, Li H, Hu Z, Zhang K, Cheng FY, Chen J. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. J Mater Chem A. 2014;2(23):8668.CrossRef
[17]
go back to reference Wang DX, Chen N, Li ML, Wang CZ, Ehrenberg H, Bie XF, Wei YJ, Chen G, Du F. Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A. 2015;3(16):8636.CrossRef Wang DX, Chen N, Li ML, Wang CZ, Ehrenberg H, Bie XF, Wei YJ, Chen G, Du F. Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A. 2015;3(16):8636.CrossRef
[18]
go back to reference Ma DL, Wang HG, Li Y, Xu D, Yuan S, Huang XL, Zhang XB, Zhang Y. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy. 2014;10(3):295.CrossRef Ma DL, Wang HG, Li Y, Xu D, Yuan S, Huang XL, Zhang XB, Zhang Y. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy. 2014;10(3):295.CrossRef
[19]
go back to reference Ali G, Oh SH, Kim SY, Kim JY, Cho BW, Chung KY. An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries. J Mater Chem A. 2015;3(19):10258.CrossRef Ali G, Oh SH, Kim SY, Kim JY, Cho BW, Chung KY. An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries. J Mater Chem A. 2015;3(19):10258.CrossRef
[20]
go back to reference Fang C, Huang YH, Zhang WX, Han JT, Deng Z, Cao YL, Yang HX. Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater. 2016;6(5):18.CrossRef Fang C, Huang YH, Zhang WX, Han JT, Deng Z, Cao YL, Yang HX. Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater. 2016;6(5):18.CrossRef
[21]
go back to reference DiVincenzo DP, Mele EJ. Cohesion and structure in stage-1 graphite intercalation compounds. Phys Rev B (Condens Matter). 1985;32(4):2538.CrossRef DiVincenzo DP, Mele EJ. Cohesion and structure in stage-1 graphite intercalation compounds. Phys Rev B (Condens Matter). 1985;32(4):2538.CrossRef
[22]
go back to reference Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 2013;7(12):11004.CrossRef Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 2013;7(12):11004.CrossRef
[23]
go back to reference Tang K, Fu LJ, White RJ, Yu LH, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2012;2(7):873.CrossRef Tang K, Fu LJ, White RJ, Yu LH, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2012;2(7):873.CrossRef
[24]
go back to reference Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D. Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano. 2014;8(5):4415.CrossRef Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D. Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano. 2014;8(5):4415.CrossRef
[25]
go back to reference Liu YC, Zhang N, Jiao LF, Tao ZL, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.CrossRef Liu YC, Zhang N, Jiao LF, Tao ZL, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.CrossRef
[26]
go back to reference Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.CrossRef Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.CrossRef
[27]
go back to reference Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A. 2014;2(2):529.CrossRef Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A. 2014;2(2):529.CrossRef
[28]
go back to reference Patra J, Chen HC, Yang CH, Hsieh CT, Su CY, Chang JK. High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano Energy. 2016;28(3):124.CrossRef Patra J, Chen HC, Yang CH, Hsieh CT, Su CY, Chang JK. High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano Energy. 2016;28(3):124.CrossRef
[29]
go back to reference Zheng Y, Zhou TF, Zhang CF, Mao JF, Liu HK, Guo ZP. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Intl Ed. 2016;55(10):3408.CrossRef Zheng Y, Zhou TF, Zhang CF, Mao JF, Liu HK, Guo ZP. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Intl Ed. 2016;55(10):3408.CrossRef
[30]
go back to reference Zhou TF, Pang WK, Zhang CF, Yang JP, Chen ZX, Liu HK, Guo ZP. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano. 2014;8(8):8323.CrossRef Zhou TF, Pang WK, Zhang CF, Yang JP, Chen ZX, Liu HK, Guo ZP. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano. 2014;8(8):8323.CrossRef
[31]
go back to reference Xu XM, Niu CJ, Duan MY, Wang XP, Huang L, Wang JH, Pu LT, Ren WH, Shi CW, Meng JS, Song B, Mai LQ. Alkaline earth metal vanadates as sodium-ion battery anodes. Nat Commun. 2017;8(4):11. Xu XM, Niu CJ, Duan MY, Wang XP, Huang L, Wang JH, Pu LT, Ren WH, Shi CW, Meng JS, Song B, Mai LQ. Alkaline earth metal vanadates as sodium-ion battery anodes. Nat Commun. 2017;8(4):11.
[32]
go back to reference Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(5):16013.CrossRef Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(5):16013.CrossRef
[33]
go back to reference Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew Chem Intl Ed. 2014;53(38):10169.CrossRef Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew Chem Intl Ed. 2014;53(38):10169.CrossRef
[34]
go back to reference Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5(5):10. Wen Y, He K, Zhu YJ, Han FD, Xu YH, Matsuda I, Ishii Y, Cumings J, Wang CS. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun. 2014;5(5):10.
[35]
go back to reference Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000;147(4):1271.CrossRef Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000;147(4):1271.CrossRef
[36]
go back to reference Alcantara R, Jimenez-Mateos JM, Lavela P, Tirado JL. Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun. 2001;3(11):639.CrossRef Alcantara R, Jimenez-Mateos JM, Lavela P, Tirado JL. Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun. 2001;3(11):639.CrossRef
[37]
go back to reference Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater. 2011;21(20):3859.CrossRef Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater. 2011;21(20):3859.CrossRef
[38]
go back to reference Cao YL, Xiao LF, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie ZM, Saraf LV, Yang ZG, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7):3783.CrossRef Cao YL, Xiao LF, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie ZM, Saraf LV, Yang ZG, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7):3783.CrossRef
[39]
go back to reference Wang YX, Chou SL, Liu HK, Dou SX. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon. 2013;57(6):202.CrossRef Wang YX, Chou SL, Liu HK, Dou SX. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon. 2013;57(6):202.CrossRef
[40]
go back to reference Xu Y, Lotfabad EM, Wang HL, Farbod B, Xu ZW, Kohandehghan A, Mitlin D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun. 2013;49(79):8973.CrossRef Xu Y, Lotfabad EM, Wang HL, Farbod B, Xu ZW, Kohandehghan A, Mitlin D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun. 2013;49(79):8973.CrossRef
[41]
go back to reference Yang YC, Ji XB, Jing MJ, Hou HS, Zhu YR, Fang LB, Yang XM, Chen QY, Banks CE. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A. 2015;3(10):5648.CrossRef Yang YC, Ji XB, Jing MJ, Hou HS, Zhu YR, Fang LB, Yang XM, Chen QY, Banks CE. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A. 2015;3(10):5648.CrossRef
[42]
go back to reference Ni JF, Fu SD, Wu C, Zhao Y, Maier J, Yu Y, Li L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater. 2016;6(11):8.CrossRef Ni JF, Fu SD, Wu C, Zhao Y, Maier J, Yu Y, Li L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater. 2016;6(11):8.CrossRef
[43]
go back to reference Rudola A, Saravanan K, Devaraj S, Gong H, Balaya P. Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. Chem Commun. 2013;49(67):7451.CrossRef Rudola A, Saravanan K, Devaraj S, Gong H, Balaya P. Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. Chem Commun. 2013;49(67):7451.CrossRef
[44]
go back to reference Mortazavi M, Ye Q, Birbilis N, Medhekar NV. High capacity group-15 alloy anodes for Na-ion batteries. Electrochem Mech Insights. 2015;285(6):29. Mortazavi M, Ye Q, Birbilis N, Medhekar NV. High capacity group-15 alloy anodes for Na-ion batteries. Electrochem Mech Insights. 2015;285(6):29.
[45]
go back to reference Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.CrossRef Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.CrossRef
[46]
go back to reference Ellis LD, Hatchard TD, Obrovac MN. Reversible insertion of sodium in tin. J Electrochem Soc. 2012;159(11):A1801.CrossRef Ellis LD, Hatchard TD, Obrovac MN. Reversible insertion of sodium in tin. J Electrochem Soc. 2012;159(11):A1801.CrossRef
[47]
go back to reference Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.CrossRef Wang JW, Liu XH, Mao SX, Huang JY. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.CrossRef
[48]
go back to reference Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano. 2014;8(11):11824.CrossRef Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano. 2014;8(11):11824.CrossRef
[49]
go back to reference Cheng YY, Huang JF, Li RZ, Xu ZW, Cao LY, Ouyang HB, Li JY, Qi H, Wang CW. Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. Electrochim Acta. 2015;180(7):227.CrossRef Cheng YY, Huang JF, Li RZ, Xu ZW, Cao LY, Ouyang HB, Li JY, Qi H, Wang CW. Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. Electrochim Acta. 2015;180(7):227.CrossRef
[50]
go back to reference Liu J, Wen YR, van Aken PA, Maier J, Yu Y. Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014;14(11):6387.CrossRef Liu J, Wen YR, van Aken PA, Maier J, Yu Y. Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014;14(11):6387.CrossRef
[51]
go back to reference Xiao LF, Cao YL, Xiao J, Wang W, Kovarik L, Nie ZM, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.CrossRef Xiao LF, Cao YL, Xiao J, Wang W, Kovarik L, Nie ZM, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.CrossRef
[52]
go back to reference Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRef
[53]
go back to reference Zhou XS, Dai ZH, Bao JC, Guo YG. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. J Mater Chem A. 2013;1(44):13727.CrossRef Zhou XS, Dai ZH, Bao JC, Guo YG. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. J Mater Chem A. 2013;1(44):13727.CrossRef
[54]
go back to reference Ko YN, Kang YC. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem Commun. 2014;50(82):12322.CrossRef Ko YN, Kang YC. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem Commun. 2014;50(82):12322.CrossRef
[55]
go back to reference Liu J, Yu LT, Wu C, Wen YR, Yin KB, Chiang FK, Hu RZ, Liu JW, Sun LT, Gu L, Maier J, Yu Y, Zhu M. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017;17(3):2034.CrossRef Liu J, Yu LT, Wu C, Wen YR, Yin KB, Chiang FK, Hu RZ, Liu JW, Sun LT, Gu L, Maier J, Yu Y, Zhu M. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017;17(3):2034.CrossRef
[56]
go back to reference Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045.CrossRef Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045.CrossRef
[57]
go back to reference Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A, Wang D. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329.CrossRef Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A, Wang D. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329.CrossRef
[58]
go back to reference Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef
[59]
go back to reference Qian J, Xiong Y, Cao Y, Ai X, Yang H. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014;14(4):1865.CrossRef Qian J, Xiong Y, Cao Y, Ai X, Yang H. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014;14(4):1865.CrossRef
[60]
go back to reference Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34(9):41.CrossRef Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34(9):41.CrossRef
[61]
go back to reference Abel PR, Lin YM, de Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C. 2013;117(37):18885.CrossRef Abel PR, Lin YM, de Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C. 2013;117(37):18885.CrossRef
[62]
go back to reference Webb SA, Baggetto L, Bridges CA, Veith GM. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources. 2014;248(6):1105.CrossRef Webb SA, Baggetto L, Bridges CA, Veith GM. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources. 2014;248(6):1105.CrossRef
[63]
go back to reference Lu Y, Li B, Zheng SS, Xu YX, Xue HG, Pang H. Syntheses and energy storage applications of M x S y (M = Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors. Adv Funct Mater. 2017;27(44):28.CrossRef Lu Y, Li B, Zheng SS, Xu YX, Xue HG, Pang H. Syntheses and energy storage applications of M x S y (M = Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors. Adv Funct Mater. 2017;27(44):28.CrossRef
[64]
go back to reference Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657.CrossRef Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657.CrossRef
[65]
go back to reference Jiang YZ, Hu MJ, Zhang D, Yuan TZ, Sun WP, Xu B, Yan M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy. 2014;5(8):60.CrossRef Jiang YZ, Hu MJ, Zhang D, Yuan TZ, Sun WP, Xu B, Yan M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy. 2014;5(8):60.CrossRef
[66]
go back to reference Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK. High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta. 2014;146(5):503.CrossRef Kumar PR, Jung YH, Bharathi KK, Lim CH, Kim DK. High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta. 2014;146(5):503.CrossRef
[67]
go back to reference Jian ZL, Zhao B, Liu P, Li FJ, Zheng MB, Chen MW, Shi Y, Zhou HS. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215.CrossRef Jian ZL, Zhao B, Liu P, Li FJ, Zheng MB, Chen MW, Shi Y, Zhou HS. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215.CrossRef
[68]
go back to reference Wang LJ, Zhang K, Hu Z, Duan WC, Cheng FY, Chen J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014;7(2):199.CrossRef Wang LJ, Zhang K, Hu Z, Duan WC, Cheng FY, Chen J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014;7(2):199.CrossRef
[69]
go back to reference Rahman MM, Glushenkov AM, Ramireddy T, Chen Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem Commun. 2014;50(39):5057.CrossRef Rahman MM, Glushenkov AM, Ramireddy T, Chen Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem Commun. 2014;50(39):5057.CrossRef
[70]
go back to reference Sun WP, Rui XH, Zhu JX, Yu LH, Zhang Y, Xu ZC, Madhavi S, Yan QY. Ultrathin nickel oxide nanosheets for enhanced sodium storage and lithium storage. J Power Sources. 2015;274(6):755.CrossRef Sun WP, Rui XH, Zhu JX, Yu LH, Zhang Y, Xu ZC, Madhavi S, Yan QY. Ultrathin nickel oxide nanosheets for enhanced sodium storage and lithium storage. J Power Sources. 2015;274(6):755.CrossRef
[71]
go back to reference Su DW, Wang CY, Ahn H, Wang GX. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys. 2013;15(30):12543.CrossRef Su DW, Wang CY, Ahn H, Wang GX. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys. 2013;15(30):12543.CrossRef
[72]
go back to reference Jahel A, Ghimbeu CM, Darwiche A, Vidal L, Hajjar-Garreau S, Vix-Guterl C, Monconduit L. Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon. J Mater Chem A. 2015;3(22):11960.CrossRef Jahel A, Ghimbeu CM, Darwiche A, Vidal L, Hajjar-Garreau S, Vix-Guterl C, Monconduit L. Exceptionally highly performing Na-ion battery anode using crystalline SnO2 nanoparticles confined in mesoporous carbon. J Mater Chem A. 2015;3(22):11960.CrossRef
[73]
go back to reference Cheng DL, Liu JW, Li X, Hu RZ, Zeng MQ, Yang LC, Zhu M. A highly stable (SnO x –Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling. J Power Sources. 2017;350(1):1. Cheng DL, Liu JW, Li X, Hu RZ, Zeng MQ, Yang LC, Zhu M. A highly stable (SnO x –Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling. J Power Sources. 2017;350(1):1.
[74]
go back to reference Wu L, Lu H, Xiao L, Qian J, Ai X, Yang H, Cao Y. A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J Mater Chem A. 2014;2(39):16424.CrossRef Wu L, Lu H, Xiao L, Qian J, Ai X, Yang H, Cao Y. A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J Mater Chem A. 2014;2(39):16424.CrossRef
[75]
go back to reference Li QD, Li L, Owusu KA, Luo W, An QY, Wei QL, Zhang QJ, Mai LQ. Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy. 2017;41(11):109.CrossRef Li QD, Li L, Owusu KA, Luo W, An QY, Wei QL, Zhang QJ, Mai LQ. Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy. 2017;41(11):109.CrossRef
[76]
go back to reference Kim TB, Choi JW, Ryu HS, Cho GB, Kim KW, Ahn JH, Cho KK, Ahn HJ. Electrochemical properties of sodium/pyrite battery at room temperature. J Power Sources. 2007;174(2):1275.CrossRef Kim TB, Choi JW, Ryu HS, Cho GB, Kim KW, Ahn JH, Cho KK, Ahn HJ. Electrochemical properties of sodium/pyrite battery at room temperature. J Power Sources. 2007;174(2):1275.CrossRef
[77]
go back to reference Liu ZM, Lu TC, Song T, Yu XY, Lou XW, Paik U. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci. 2017;10(7):1576.CrossRef Liu ZM, Lu TC, Song T, Yu XY, Lou XW, Paik U. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci. 2017;10(7):1576.CrossRef
[78]
go back to reference Qu BH, Ma CZ, Ji G, Xu CH, Xu J, Meng YS, Wang TH, Lee JY. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater. 2014;26(23):3854.CrossRef Qu BH, Ma CZ, Ji G, Xu CH, Xu J, Meng YS, Wang TH, Lee JY. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater. 2014;26(23):3854.CrossRef
[79]
go back to reference Lu YY, Zhao Q, Zhang N, Lei KX, Li FJ, Chen J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater. 2016;26(6):911.CrossRef Lu YY, Zhao Q, Zhang N, Lei KX, Li FJ, Chen J. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater. 2016;26(6):911.CrossRef
[80]
go back to reference Lu YY, Zhang N, Jiang S, Zhang YD, Zhou M, Tao ZL, Archer LA, Chen J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide-graphene foam architecture. Nano Lett. 2017;17(6):3668.CrossRef Lu YY, Zhang N, Jiang S, Zhang YD, Zhou M, Tao ZL, Archer LA, Chen J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide-graphene foam architecture. Nano Lett. 2017;17(6):3668.CrossRef
[81]
go back to reference Su DW, Dou SX, Wang GX. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater. 2015;5(6):6.CrossRef Su DW, Dou SX, Wang GX. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater. 2015;5(6):6.CrossRef
[82]
go back to reference Zhang ZA, Zhao XX, Li J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim Acta. 2015;176(5):1296.CrossRef Zhang ZA, Zhao XX, Li J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim Acta. 2015;176(5):1296.CrossRef
[83]
go back to reference Zhao L, Zhao JM, Hu YS, Li H, Zhou ZB, Armand M, Chen LQ. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.CrossRef Zhao L, Zhao JM, Hu YS, Li H, Zhou ZB, Armand M, Chen LQ. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.CrossRef
[84]
go back to reference Wu XY, Jin SF, Zhang ZZ, Jiang LW, Mu LQ, Hu YS, Li H, Chen XL, Armand M, Chen LQ, Huang XJ. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci Adv. 2015;1(8):9.CrossRef Wu XY, Jin SF, Zhang ZZ, Jiang LW, Mu LQ, Hu YS, Li H, Chen XL, Armand M, Chen LQ, Huang XJ. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci Adv. 2015;1(8):9.CrossRef
[85]
go back to reference Zhu ZQ, Li H, Liang J, Tao ZL, Chen J. The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem Commun. 2015;51(8):1446.CrossRef Zhu ZQ, Li H, Liang J, Tao ZL, Chen J. The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem Commun. 2015;51(8):1446.CrossRef
[86]
go back to reference Castillo-Martinez E, Carretero-Gonzalez J, Armand M. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chem Intl Ed. 2014;53(21):5341.CrossRef Castillo-Martinez E, Carretero-Gonzalez J, Armand M. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chem Intl Ed. 2014;53(21):5341.CrossRef
[87]
go back to reference Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24(26):3562.CrossRef Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24(26):3562.CrossRef
[88]
go back to reference Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. All organic sodium-ion batteries with Na4C8H2O6. Angew Chem Intl Ed. 2014;53(23):5892.CrossRef Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. All organic sodium-ion batteries with Na4C8H2O6. Angew Chem Intl Ed. 2014;53(23):5892.CrossRef
[89]
go back to reference Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, Wang RS. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13(2):450.CrossRef Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, Wang RS. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13(2):450.CrossRef
[90]
go back to reference Luo C, Zhu Y, Xu Y, Liu Y, Gao T, Wang J, Wang C. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J Power Sources. 2014;250(5):372.CrossRef Luo C, Zhu Y, Xu Y, Liu Y, Gao T, Wang J, Wang C. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. J Power Sources. 2014;250(5):372.CrossRef
[91]
go back to reference Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR. In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci. 2012;5(9):8572.CrossRef Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR. In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci. 2012;5(9):8572.CrossRef
[92]
go back to reference Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015;25(4):534.CrossRef Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015;25(4):534.CrossRef
[93]
go back to reference Wang CC, Wang LB, Li FJ, Cheng FY, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):7. Wang CC, Wang LB, Li FJ, Cheng FY, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):7.
[94]
go back to reference Zhang J, Wang DW, Lv W, Zhang SW, Liang QH, Zheng DQ, Kang FY, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370.CrossRef Zhang J, Wang DW, Lv W, Zhang SW, Liang QH, Zheng DQ, Kang FY, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370.CrossRef
Metadata
Title
High-performance anode materials for Na-ion batteries
Authors
De-Liang Cheng
Li-Chun Yang
Min Zhu
Publication date
13-03-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2018
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1015-0

Other articles of this Issue 3/2018

Rare Metals 3/2018 Go to the issue

Premium Partners