Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

07-07-2018

High rate cyclability of nickle-doped LiNi0.1Mn1.9O4 cathode materials prepared by a facile molten-salt combustion method for lithium-ion batteries

Authors: Hongli Bai, Wangqiong Xu, Junming Guo, Chang-wei Su, Mingwu Xiang, Xiaofang Liu, Rui Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here we employed a facile low temperature molten-salt combustion method combined with two-stage calcination process to synthesize a series of Ni-doped spinel LiNi0.1Mn1.9O4 cathode materials. All the LiNi0.1Mn1.9O4 materials present well-defined cubic spinel structure with a representative Fd3m space group. With the elevated calcination temperature, the particle size and crystallinity increase simultaneously. Benefiting from the optimization of calcination temperature, the LiNi0.1Mn1.9O4 prepared at 600 °C reveals a favorable crystal structure and morphology consisted of homogeneous nanoparticles with a size of 90–110 nm. Consequently, the optimized LiNi0.1Mn1.9O4 cathode exhibits high rate capability and ultralong cycling stability with a discharge specific capacity of 97.1 mAh g−1 and a capacity retention of 63.5% after 1000 cycles at a high current rate of 10 and 25 °C. Even at a high-temperature of 55 °C, a high initial discharge capacity of 106.1 mAh g−1 and a good capacity retention of 79.0% is also obtained after 100 cycles at 5 C. Such an excellent electrochemical performance together with the facile synthesis approach may endow the as-prepared LiNi0.1Mn1.9O4 to be a promising practical application for high-power lithium-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Arumugam, G.P. Kalaignan, Synthesis and elelctrochemical charaterizations of nano size Ce doped LiMn2O4 cathode materials for rechargeable lithium batteries. J. Electroanal. Chem. 648, 54–59 (2010)CrossRef D. Arumugam, G.P. Kalaignan, Synthesis and elelctrochemical charaterizations of nano size Ce doped LiMn2O4 cathode materials for rechargeable lithium batteries. J. Electroanal. Chem. 648, 54–59 (2010)CrossRef
2.
go back to reference F. Mattelaer, P.M. Vereecken, J. Dendooven, C. Detavernier, The influence of ultrathin amorphous ALD alumina and Titania on the rate capability of anatase TiO2 and LiMn2O4 Lithium ion battery electrodes. Adv. Mater. Interfaces 4, 1601237 (2017)CrossRef F. Mattelaer, P.M. Vereecken, J. Dendooven, C. Detavernier, The influence of ultrathin amorphous ALD alumina and Titania on the rate capability of anatase TiO2 and LiMn2O4 Lithium ion battery electrodes. Adv. Mater. Interfaces 4, 1601237 (2017)CrossRef
3.
go back to reference D. Arumugam, G.P. Kalaignan, K. Vediappan, C.W. Lee, Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 materials for rechargeable lithium batteries. Electrochim. Acta 55, 8439–8444 (2010)CrossRef D. Arumugam, G.P. Kalaignan, K. Vediappan, C.W. Lee, Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 materials for rechargeable lithium batteries. Electrochim. Acta 55, 8439–8444 (2010)CrossRef
4.
go back to reference H. Zhang, Y.L. Xu, D. Liu, X.S. Zhang, C.J. Zhao, Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method. Electrochim. Acta 125, 225–231 (2014)CrossRef H. Zhang, Y.L. Xu, D. Liu, X.S. Zhang, C.J. Zhao, Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method. Electrochim. Acta 125, 225–231 (2014)CrossRef
5.
go back to reference O.S. Mendoz-Hernandez, H. Ishikaw, Y. Nishikaw, Y. Maruyam, Y. Sone, M. Umed, Electrochemical impedance study of LiCoO2 cathode reactions in a lithium ion cell incorporating a reference electrode. J. Solid State Electrochem. 19, 1203–1210 (2015)CrossRef O.S. Mendoz-Hernandez, H. Ishikaw, Y. Nishikaw, Y. Maruyam, Y. Sone, M. Umed, Electrochemical impedance study of LiCoO2 cathode reactions in a lithium ion cell incorporating a reference electrode. J. Solid State Electrochem. 19, 1203–1210 (2015)CrossRef
6.
go back to reference M.V. Reddy, T.W. Jie, C.J. Jafta, K.I. Ozoemena, M.K. Mathe, A.S. Nair, S.S. Peng, M.S. Idris, G. Balakrishna, F.I. Ezema, B.V.R. Chowdari, Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries. Electrochim. Acta 128, 192–197 (2014)CrossRef M.V. Reddy, T.W. Jie, C.J. Jafta, K.I. Ozoemena, M.K. Mathe, A.S. Nair, S.S. Peng, M.S. Idris, G. Balakrishna, F.I. Ezema, B.V.R. Chowdari, Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries. Electrochim. Acta 128, 192–197 (2014)CrossRef
7.
go back to reference X. Li, Z.W. Xie, W.J. Liu, W.J. Ge, H. Wang, M.Z. Qu, Effects of fluorine doping on structure surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta 174, 1122–1130 (2015)CrossRef X. Li, Z.W. Xie, W.J. Liu, W.J. Ge, H. Wang, M.Z. Qu, Effects of fluorine doping on structure surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta 174, 1122–1130 (2015)CrossRef
8.
go back to reference S.N. Kwon, H.R. Park, M.Y. Song, Electrochemical performances of LiNiO2 substituted by Ti for Ni via the combustion method. Ceram. Int. 40, 11131–11137 (2014)CrossRef S.N. Kwon, H.R. Park, M.Y. Song, Electrochemical performances of LiNiO2 substituted by Ti for Ni via the combustion method. Ceram. Int. 40, 11131–11137 (2014)CrossRef
9.
go back to reference M.S. Wang, J. Wang, J. Zhang, L.Z. Fan, Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21, 27–35 (2015)CrossRef M.S. Wang, J. Wang, J. Zhang, L.Z. Fan, Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21, 27–35 (2015)CrossRef
10.
go back to reference X.F. Gao, Y.J. Sha, Q. Lin, R. Cai, M.O. Tade, Z.P. Shao, Combustio n-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J. Power Sources 275, 38–44 (2015)CrossRef X.F. Gao, Y.J. Sha, Q. Lin, R. Cai, M.O. Tade, Z.P. Shao, Combustio n-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J. Power Sources 275, 38–44 (2015)CrossRef
11.
go back to reference M. Talebi-Esfandarani, O. Savadogo, Synthesis and characterization of Pt-doped LiFePO4/C composites using the sol-gel method as the cathode material in lithium-ion batteries. J. Appl. Electrochem. 44, 555–562 (2014)CrossRef M. Talebi-Esfandarani, O. Savadogo, Synthesis and characterization of Pt-doped LiFePO4/C composites using the sol-gel method as the cathode material in lithium-ion batteries. J. Appl. Electrochem. 44, 555–562 (2014)CrossRef
12.
go back to reference L. Yao, Y. Wang, W.M. Xiang, J. Li, B. Wang, H. Liu, Facile synthesis of LiFePO4/C with high tap-density as cathode for high performance lithium ion batteries. Int. J. Electrochem. Sci. 12, 206–217 (2017)CrossRef L. Yao, Y. Wang, W.M. Xiang, J. Li, B. Wang, H. Liu, Facile synthesis of LiFePO4/C with high tap-density as cathode for high performance lithium ion batteries. Int. J. Electrochem. Sci. 12, 206–217 (2017)CrossRef
13.
go back to reference R.Y. Jiang, C.Y. Cui, H.Y. Ma, T. Chen, Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55 °C by the nano Ag-coating. J. Electroanal. Chem. 744, 69–76 (2015)CrossRef R.Y. Jiang, C.Y. Cui, H.Y. Ma, T. Chen, Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55 °C by the nano Ag-coating. J. Electroanal. Chem. 744, 69–76 (2015)CrossRef
14.
go back to reference H.Q. Wang, F.Y. Lai, Y. Li, X.H. Zhang, Y.G. Huang, S.J. Hu, Q.Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim. Acta 177, 290–297 (2015)CrossRef H.Q. Wang, F.Y. Lai, Y. Li, X.H. Zhang, Y.G. Huang, S.J. Hu, Q.Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim. Acta 177, 290–297 (2015)CrossRef
15.
go back to reference X.Y. Feng, Y. Tian, J.X. Zhang, L.W. Yin, The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn2−xAlxO4 (x = 0, 0.05, 0.1, 0.15) cathode materials. Powder Technol. 253, 35–40 (2014)CrossRef X.Y. Feng, Y. Tian, J.X. Zhang, L.W. Yin, The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn2−xAlxO4 (x = 0, 0.05, 0.1, 0.15) cathode materials. Powder Technol. 253, 35–40 (2014)CrossRef
16.
go back to reference W. Wu, J. Guo, X. Qin, C. Bi, J. Wang, L. Wang, G. Liang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half-cell and full-cell via yttrium doping. J. Alloy. Compd. 721, 721–730 (2017)CrossRef W. Wu, J. Guo, X. Qin, C. Bi, J. Wang, L. Wang, G. Liang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half-cell and full-cell via yttrium doping. J. Alloy. Compd. 721, 721–730 (2017)CrossRef
17.
go back to reference A.M. Hashem, A.E. Abdel-Ghany, H.M. Abuzeid, R.S. El-Tawil, S. Indris, H. Ehrenberg, C.M. Julien, EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloy. Compd. 37, 758–766 (2018)CrossRef A.M. Hashem, A.E. Abdel-Ghany, H.M. Abuzeid, R.S. El-Tawil, S. Indris, H. Ehrenberg, C.M. Julien, EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloy. Compd. 37, 758–766 (2018)CrossRef
18.
go back to reference D.Y. Shin, Y.G. Lee, H.J. Ahn, One-pot synthesis of aluminum oxide coating and aluminum doping on lithium manganese oxide nanoparticles for high performance energy storage system. J. Alloy. Compd. 27, 165–1170 (2017) D.Y. Shin, Y.G. Lee, H.J. Ahn, One-pot synthesis of aluminum oxide coating and aluminum doping on lithium manganese oxide nanoparticles for high performance energy storage system. J. Alloy. Compd. 27, 165–1170 (2017)
19.
go back to reference S. Tao, H. Zhao, C. Wu, H. Xie, P. Cu, T. Xiang, W. Chu, Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Mater. Chem. Phys. 199, 203–208 (2017)CrossRef S. Tao, H. Zhao, C. Wu, H. Xie, P. Cu, T. Xiang, W. Chu, Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Mater. Chem. Phys. 199, 203–208 (2017)CrossRef
20.
go back to reference J. Yan, H.H. Liu, Y.L. Wang, X.X. Zhao, Y.M. Mi, B.J. Xia, Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries. Ionics 21, 1835–1842 (2015)CrossRef J. Yan, H.H. Liu, Y.L. Wang, X.X. Zhao, Y.M. Mi, B.J. Xia, Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries. Ionics 21, 1835–1842 (2015)CrossRef
21.
go back to reference Y.S. Shi, S.M. Zhu, C.L. Zhu, Y. Li, Z.X. Chen, D. Zhang, Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery. Electrochim. Acta 154, 17–23 (2015)CrossRef Y.S. Shi, S.M. Zhu, C.L. Zhu, Y. Li, Z.X. Chen, D. Zhang, Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery. Electrochim. Acta 154, 17–23 (2015)CrossRef
22.
go back to reference D. Chen, D. Kramer, R. Mönig, Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries. Electrochim. Acta 259, 939–948 (2018)CrossRef D. Chen, D. Kramer, R. Mönig, Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries. Electrochim. Acta 259, 939–948 (2018)CrossRef
23.
go back to reference T.F. Yi, L.C. Yin, Y.Q. Ma, H.Y. Shen, Y.R. Zhu, R.S. Zhu, Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram. Int. 39, 4673–4678 (2013)CrossRef T.F. Yi, L.C. Yin, Y.Q. Ma, H.Y. Shen, Y.R. Zhu, R.S. Zhu, Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram. Int. 39, 4673–4678 (2013)CrossRef
24.
go back to reference M.W. Xiang, C.W. Su, L.L. Feng, M.L. Yuan, J.M. Guo, Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≦ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim. Acta 125, 524–529 (2014)CrossRef M.W. Xiang, C.W. Su, L.L. Feng, M.L. Yuan, J.M. Guo, Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≦ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim. Acta 125, 524–529 (2014)CrossRef
25.
go back to reference A. Lturrondobeitia, A. Goni, L. Lezama, C. Kim, M. Doeff, J. Cabana, T. Rojo, Effect of Si(IV) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2−xSixO4. J. Mater. Chem. A1, 10857–10862 (2013)CrossRef A. Lturrondobeitia, A. Goni, L. Lezama, C. Kim, M. Doeff, J. Cabana, T. Rojo, Effect of Si(IV) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2−xSixO4. J. Mater. Chem. A1, 10857–10862 (2013)CrossRef
26.
go back to reference T.F. Yi, S.Y. Yang, H.T. Ma, X.Y. Li, Y.Q. Ma, H.B. Qiao, R.S. Zhu, Effect of temperatue on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4 positive electrode material. Ionics 20, 309–314 (2014)CrossRef T.F. Yi, S.Y. Yang, H.T. Ma, X.Y. Li, Y.Q. Ma, H.B. Qiao, R.S. Zhu, Effect of temperatue on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4 positive electrode material. Ionics 20, 309–314 (2014)CrossRef
27.
go back to reference Y. Wei, K.B. Kima, G. Chen, Evolution of the local structure and electrochemical properties of spinel LiNixMn2–xO4 (0 ≤ x ≤ 0.5). Electrochim. Acta 51, 3365–3373 (2006)CrossRef Y. Wei, K.B. Kima, G. Chen, Evolution of the local structure and electrochemical properties of spinel LiNixMn2–xO4 (0 ≤ x ≤ 0.5). Electrochim. Acta 51, 3365–3373 (2006)CrossRef
28.
go back to reference M.A. Kebede, N. Kunjuzwa, C.J. Jafta, M.K. Mathe, K.I. Ozoemena, Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2–xO4; 0 ≦ x ≦ 0.2)for lithium ion battery: enhancing energy storage capacity retention and lithium ion transport. Electrochim. Acta 128, 172–177 (2014)CrossRef M.A. Kebede, N. Kunjuzwa, C.J. Jafta, M.K. Mathe, K.I. Ozoemena, Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2–xO4; 0 ≦ x ≦ 0.2)for lithium ion battery: enhancing energy storage capacity retention and lithium ion transport. Electrochim. Acta 128, 172–177 (2014)CrossRef
29.
go back to reference F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Spinel LiNixMn2–xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochim. Acta 93, 301–306 (2013)CrossRef F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Spinel LiNixMn2–xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochim. Acta 93, 301–306 (2013)CrossRef
30.
go back to reference H.M. Wu, J.P. Tu, X.T. Chen, Y. Li, X.B. Zhao, G.S. Cao, Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J. Solid State Electrochem. 11, 173–176 (2007)CrossRef H.M. Wu, J.P. Tu, X.T. Chen, Y. Li, X.B. Zhao, G.S. Cao, Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J. Solid State Electrochem. 11, 173–176 (2007)CrossRef
31.
go back to reference Q.L. Wei, X.Y. Wang, X.K. Yang, B.W. Ju, B.N. Hu, H.B. Shu, W.C. Wen, M. Zhou, Y.F. Song, H. Wu, H. Hu, Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A1, 4010–4016 (2013)CrossRef Q.L. Wei, X.Y. Wang, X.K. Yang, B.W. Ju, B.N. Hu, H.B. Shu, W.C. Wen, M. Zhou, Y.F. Song, H. Wu, H. Hu, Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A1, 4010–4016 (2013)CrossRef
32.
go back to reference Y. Deng, J. Mou, H. Wu, L. Zhou, Q. Zheng, K.H. Lam, D. Lin, Enhanced electrochemical performance in Ni-doped LiMn2O4-based composite cathodes for lithium-ion batteries. ChemElectroChem 4, 1362–1371 (2017)CrossRef Y. Deng, J. Mou, H. Wu, L. Zhou, Q. Zheng, K.H. Lam, D. Lin, Enhanced electrochemical performance in Ni-doped LiMn2O4-based composite cathodes for lithium-ion batteries. ChemElectroChem 4, 1362–1371 (2017)CrossRef
33.
go back to reference J. Jiang, L. Liang, D. Li, J. Xiao, Z. Peng, K. Du, F. Jiang, Synthesis of high-performance cycling LiNixMn2–xO4 (x ≤ 0.10) as cathode material for lithium batteries. J. Nanosci. Nanotechnol. 17, 9182–9185 (2017)CrossRef J. Jiang, L. Liang, D. Li, J. Xiao, Z. Peng, K. Du, F. Jiang, Synthesis of high-performance cycling LiNixMn2–xO4 (x ≤ 0.10) as cathode material for lithium batteries. J. Nanosci. Nanotechnol. 17, 9182–9185 (2017)CrossRef
34.
go back to reference M.W. Raja, S. Mahanty, R.N. Basu, Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method. J. Power Sources 192, 618–626 (2009)CrossRef M.W. Raja, S. Mahanty, R.N. Basu, Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method. J. Power Sources 192, 618–626 (2009)CrossRef
35.
go back to reference S. Mukherjee, N. Schuppert, A. Bates, S.C. Lee, S. Park, Novel mesoporous microspheres of Al and Ni doped LMO spinels and their performance as cathodes in secondary lithium ion batteries. Int. J. Green Energy 14, 656–664 (2017)CrossRef S. Mukherjee, N. Schuppert, A. Bates, S.C. Lee, S. Park, Novel mesoporous microspheres of Al and Ni doped LMO spinels and their performance as cathodes in secondary lithium ion batteries. Int. J. Green Energy 14, 656–664 (2017)CrossRef
36.
go back to reference K.J. Kim, J.H. Lee, Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films. Solid State Commun. 141, 99–103 (2007)CrossRef K.J. Kim, J.H. Lee, Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films. Solid State Commun. 141, 99–103 (2007)CrossRef
37.
go back to reference A. Iqbal, Y. Iqbal, A.M. Khan, S. Ahmed, Low content Ni and Cr co-doped LiMn2O4 with enhanced capacity retention. Ionics 23, 1995–2003 (2017)CrossRef A. Iqbal, Y. Iqbal, A.M. Khan, S. Ahmed, Low content Ni and Cr co-doped LiMn2O4 with enhanced capacity retention. Ionics 23, 1995–2003 (2017)CrossRef
38.
go back to reference K. Ragavendran, A. Nakkiran, P. Kalyani, A. Veluchamy, R. Jagannathan, Nickel doped spinel lithium manganate—some insights using opto-impedance. Chem. Phys. Lett. 456, 110–115 (2008)CrossRef K. Ragavendran, A. Nakkiran, P. Kalyani, A. Veluchamy, R. Jagannathan, Nickel doped spinel lithium manganate—some insights using opto-impedance. Chem. Phys. Lett. 456, 110–115 (2008)CrossRef
39.
go back to reference J.J. Huang, F.L. Yang, Y.J. Guo, C.C. Peng, H.L. Bai, J.H. Peng, J.M. Guo, LiMgxMn2–xO4 (x ≦ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature. Ceram. Int. 41, 9662–9667 (2015)CrossRef J.J. Huang, F.L. Yang, Y.J. Guo, C.C. Peng, H.L. Bai, J.H. Peng, J.M. Guo, LiMgxMn2–xO4 (x ≦ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature. Ceram. Int. 41, 9662–9667 (2015)CrossRef
40.
go back to reference J.J. Huang, Q.L. Li, H.L. Bai, W.Q. Xu, Y.H. He, C.W. Su, J.H. Peng, J.M. Guo, Preparation and electrochemical properties of LiCuxMn2–xO4 (x ≤ 0.10) cathode material by a low-temperature molten-salt combustion method. Int. J. Electrochem. Sci. 10, 4596–4603 (2015) J.J. Huang, Q.L. Li, H.L. Bai, W.Q. Xu, Y.H. He, C.W. Su, J.H. Peng, J.M. Guo, Preparation and electrochemical properties of LiCuxMn2–xO4 (x ≤ 0.10) cathode material by a low-temperature molten-salt combustion method. Int. J. Electrochem. Sci. 10, 4596–4603 (2015)
41.
go back to reference C.H. Jiang, S.X. Dou, H.K. Liu, M. Ichihara, H.S. Zhou, Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J. Power Sources 172, 410–415 (2007)CrossRef C.H. Jiang, S.X. Dou, H.K. Liu, M. Ichihara, H.S. Zhou, Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J. Power Sources 172, 410–415 (2007)CrossRef
42.
go back to reference Y.J. Wei, L.Y. Yan, C.Z. Wang, X.G. Xu, F. Wu, G. Chen, Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J. Phys. Chem. B 108, 18547–18551 (2004)CrossRef Y.J. Wei, L.Y. Yan, C.Z. Wang, X.G. Xu, F. Wu, G. Chen, Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J. Phys. Chem. B 108, 18547–18551 (2004)CrossRef
43.
go back to reference M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subba, B.V.R. Chowdari, (Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries. Electrochim. Acta 88, 745–755 (2013)CrossRef M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subba, B.V.R. Chowdari, (Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries. Electrochim. Acta 88, 745–755 (2013)CrossRef
44.
go back to reference A.B. Yuan, L. Tian, W.M. Xu, Y.Q. Wang, Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sources 195, 5032–5038 (2010)CrossRef A.B. Yuan, L. Tian, W.M. Xu, Y.Q. Wang, Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sources 195, 5032–5038 (2010)CrossRef
45.
go back to reference W.J. Zhou. S.J. Bao, Y.Y. Liang, B.L. He, H.L. Li, Synthesis and electrochemical properties of spinel LiMn2O4 prepared by the rheological phase method. J. Solid State Electrochem. 10, 277–282 (2006)CrossRef W.J. Zhou. S.J. Bao, Y.Y. Liang, B.L. He, H.L. Li, Synthesis and electrochemical properties of spinel LiMn2O4 prepared by the rheological phase method. J. Solid State Electrochem. 10, 277–282 (2006)CrossRef
46.
go back to reference H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. 29, 3035–3044 (2018) H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. 29, 3035–3044 (2018)
47.
go back to reference S.E.M. pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nano particles derived from a harmful marine biomass as high performance asymmetric supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4746–4758 (2018)CrossRef S.E.M. pourhosseini, O. Norouzi, P. Salimi, H.R. Naderi, Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nano particles derived from a harmful marine biomass as high performance asymmetric supercapacitor electrodes. ACS Sustain. Chem. Eng. 6, 4746–4758 (2018)CrossRef
48.
go back to reference G.T.K. Fey, C.Z. Lu, T.P. Kumar, Preparation and electrochemical properties of high-voltage cathode materials LiMyNi0.5–yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0.0-0.4). J. Power Sources 115, 332–345 (2003)CrossRef G.T.K. Fey, C.Z. Lu, T.P. Kumar, Preparation and electrochemical properties of high-voltage cathode materials LiMyNi0.5–yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0.0-0.4). J. Power Sources 115, 332–345 (2003)CrossRef
49.
go back to reference S.J. Bao, Y.Y. Liang, W.J. Zhou, B.L. He, H.L. Li, Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol-gel method. J. Power Sources 154, 239–245 (2006)CrossRef S.J. Bao, Y.Y. Liang, W.J. Zhou, B.L. He, H.L. Li, Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol-gel method. J. Power Sources 154, 239–245 (2006)CrossRef
Metadata
Title
High rate cyclability of nickle-doped LiNi0.1Mn1.9O4 cathode materials prepared by a facile molten-salt combustion method for lithium-ion batteries
Authors
Hongli Bai
Wangqiong Xu
Junming Guo
Chang-wei Su
Mingwu Xiang
Xiaofang Liu
Rui Wang
Publication date
07-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9603-1

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue