Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

06-07-2018

Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties

Authors: R. S. Melo, P. Banerjee, A. Franco Jr.

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nickel-doped cobalt ferrite \([{\text {Co}}_{1- x }\hbox {Ni}_{ x }\hbox {Fe}_{2}\hbox {O}_{4} \,(0\le x\le 1)]\) nanoparticles are synthesized by means of hydrothermal method. The structural, morphological and microstructural characterization revealed crystallite size was roughly spherical for lower nickel concentration while for higher ones in diamond shape consisting of nanosized grains. The optical band-gap (\(E_{g}\)) values decreased with the \({\text {Ni}}^{2+}\) ions (x) concentration being 2.94 and 2.51 eV for \(x=0\) and \(x=1\), respectively. The presence of nickel in the cobalt ferrite structure affected the magnetic properties. For instance, the saturation magnetization, \(M_{s}\) and remanent magnetization, \(M_{r}\) decreased from 369 to 256 emu cm−3 and 131–45 emu cm−3 for \(x=0\) and \(x=1\), respectively. The \(M_{s}\) data was discussed in term of the three-sublattice of non-collinear spin (canted spin) structure proposed by Yafet and Kittel model. On the other hand the coercivity, \(H_{c}\) from 890 Oe to 1590 Oe for \(x=0\) and \(x=0.6\), and sharply dropped to 50 Oe for \(x=1.\) The enhanced coercivity was discussed in terms of particles size, defects and residual strain which may act as pinning centers. The cubic magnetocrystalline constant, \(K_{1}\) determined by using the “law of approach” to saturation decreases with \({\text {Ni}}^{2+}\) ions (x) concentration being \(4.9\times 10^{6}\) and \(2.8\times 10^{6}\) erg cm−3 for \(x=0\) and \(x=1\), respectively. These results were discussed in terms of the inter-particle interactions induced by the presence of \({\text {Ni}}^{2+}\) ions at the octahedral sites which affected the strength of L–S coupling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Liu, B. Zou, A.J. Rondinone, Z.Z. John, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRef C. Liu, B. Zou, A.J. Rondinone, Z.Z. John, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRef
2.
go back to reference M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, Magnetic properties of nanocrystalline \(\text{CoFe}_{2}\text{O}_{4}\) powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232(1–2), 71–83 (2001)CrossRef M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, Magnetic properties of nanocrystalline \(\text{CoFe}_{2}\text{O}_{4}\) powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232(1–2), 71–83 (2001)CrossRef
3.
go back to reference K.E. Mooney, J.A. Nelson, M.J. Wagner, Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem. Mater. 16, 3155–3161 (2004)CrossRef K.E. Mooney, J.A. Nelson, M.J. Wagner, Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem. Mater. 16, 3155–3161 (2004)CrossRef
4.
go back to reference D.H. Lee, H.S. Kim, J.Y. Lee, Characterization of the magnetic properties and transport mechanisms of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\) spinel. Solid State Commun. 96(7), 445–449 (1995)CrossRef D.H. Lee, H.S. Kim, J.Y. Lee, Characterization of the magnetic properties and transport mechanisms of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\) spinel. Solid State Commun. 96(7), 445–449 (1995)CrossRef
5.
go back to reference M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, LlM Martinez, J.S. Muñoz, M. Mikhov, Magnetic properties and mössbauer spectra of nanosized \(\text{CoFe}_{2}\text{O}_{4}\) powders. J. Magn. Magn. Mater. 183(1–2), 163–172 (1998)CrossRef M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, LlM Martinez, J.S. Muñoz, M. Mikhov, Magnetic properties and mössbauer spectra of nanosized \(\text{CoFe}_{2}\text{O}_{4}\) powders. J. Magn. Magn. Mater. 183(1–2), 163–172 (1998)CrossRef
6.
go back to reference A. Franco, V. Zapf, P. Egan, Magnetic properties of nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_4\) (\(0.05\le x \le 1.6\)) prepared by combustion reaction. J. Appl. Phys. 101(9), 09M506 (2007)CrossRef A. Franco, V. Zapf, P. Egan, Magnetic properties of nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_4\) (\(0.05\le x \le 1.6\)) prepared by combustion reaction. J. Appl. Phys. 101(9), 09M506 (2007)CrossRef
7.
go back to reference S.R. Ahmed, P. Kofinas, Synthesis and magnetic properties of block copolymer-\(\text{CoFe}_2\text{O}_{4}\) nanoclusters. MRS Proc. 661, KK10.10 (2000)CrossRef S.R. Ahmed, P. Kofinas, Synthesis and magnetic properties of block copolymer-\(\text{CoFe}_2\text{O}_{4}\) nanoclusters. MRS Proc. 661, KK10.10 (2000)CrossRef
8.
go back to reference S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped \(\text{CoFe}_{2-x}\text{Zn}_{x}\text{O}_{4-\delta }\) nanoparticles. J. Magn. Magn. Mater. 414, 144–152 (2016)CrossRef S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped \(\text{CoFe}_{2-x}\text{Zn}_{x}\text{O}_{4-\delta }\) nanoparticles. J. Magn. Magn. Mater. 414, 144–152 (2016)CrossRef
9.
go back to reference B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New Jersey, 2009) B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New Jersey, 2009)
10.
go back to reference K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)CrossRef K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)CrossRef
11.
go back to reference D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of \(\text{Co}_{1-x}\text{Zn}_{x}\text{Fe}_{2}\text{O}_{4}\) (\(x=0-1\)) nanoparticles. RSC Adv. 5(3), 2338–2345 (2015)CrossRef D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of \(\text{Co}_{1-x}\text{Zn}_{x}\text{Fe}_{2}\text{O}_{4}\) (\(x=0-1\)) nanoparticles. RSC Adv. 5(3), 2338–2345 (2015)CrossRef
12.
go back to reference A. Baykal, N. Kasapolu, Y. Koseolu, M.S. Toprak, Harun Bayrakdar, CTAB-assisted hydrothermal synthesis of \(\text{NiFe}_{2}\text{O}_{4}\) and its magnetic characterization. J. Alloys Compd. 464(1–2), 514–518 (2008)CrossRef A. Baykal, N. Kasapolu, Y. Koseolu, M.S. Toprak, Harun Bayrakdar, CTAB-assisted hydrothermal synthesis of \(\text{NiFe}_{2}\text{O}_{4}\) and its magnetic characterization. J. Alloys Compd. 464(1–2), 514–518 (2008)CrossRef
13.
go back to reference S. Chikazumi, Physics of Magnetism, 2nd edn. (Oxford University Press, New York, 1997) S. Chikazumi, Physics of Magnetism, 2nd edn. (Oxford University Press, New York, 1997)
14.
go back to reference M. Yokoyama, T. Sato, E. Ohta, T. Sato, Magnetization of cadmium ferrite prepared by coprecipitation. J. Appl. Phys. 80(2), 1015–1019 (1996)CrossRef M. Yokoyama, T. Sato, E. Ohta, T. Sato, Magnetization of cadmium ferrite prepared by coprecipitation. J. Appl. Phys. 80(2), 1015–1019 (1996)CrossRef
15.
go back to reference X.-M. Liu, F. Shao-Yun, C.-J. Huang, Synthesis and magnetic characterization of novel \(\text{CoFe}_{2}\text{O}_{4}-\text{BiFeO}_{3}\) nanocomposites. Mater. Sci. Eng. B 121(3), 255–260 (2005)CrossRef X.-M. Liu, F. Shao-Yun, C.-J. Huang, Synthesis and magnetic characterization of novel \(\text{CoFe}_{2}\text{O}_{4}-\text{BiFeO}_{3}\) nanocomposites. Mater. Sci. Eng. B 121(3), 255–260 (2005)CrossRef
16.
go back to reference A. Hutlova, D. Niznansky, J.-L. Rehspringer, C. Estournès, M. Kurmoo, High coercive field for nanoparticles of \(\text{CoFe}_{2}\text{O}_{4}\) in amorphous silica sol-gel. Adv. Mater. 15(19), 1622–1625 (2003)CrossRef A. Hutlova, D. Niznansky, J.-L. Rehspringer, C. Estournès, M. Kurmoo, High coercive field for nanoparticles of \(\text{CoFe}_{2}\text{O}_{4}\) in amorphous silica sol-gel. Adv. Mater. 15(19), 1622–1625 (2003)CrossRef
17.
go back to reference N. Moumen, M.P. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)CrossRef N. Moumen, M.P. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)CrossRef
18.
go back to reference K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Sonochemical preparation and size-dependent properties of nanostructured \(\text{CoFe}_{2}\text{O}_{4}\) particles. Chem. Mater. 10(11), 3445–3450 (1998)CrossRef K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Sonochemical preparation and size-dependent properties of nanostructured \(\text{CoFe}_{2}\text{O}_{4}\) particles. Chem. Mater. 10(11), 3445–3450 (1998)CrossRef
19.
go back to reference L. Zhen, K. He, C.Y. Xu, W.Z. Shao, Synthesis and characterization of single-crystalline \(\text{MnFe}_{2}\text{O}_{4}\) nanorods via a surfactant-free hydrothermal route. J. Magn. Magn. Mater. 320(21), 2672–2675 (2008)CrossRef L. Zhen, K. He, C.Y. Xu, W.Z. Shao, Synthesis and characterization of single-crystalline \(\text{MnFe}_{2}\text{O}_{4}\) nanorods via a surfactant-free hydrothermal route. J. Magn. Magn. Mater. 320(21), 2672–2675 (2008)CrossRef
20.
go back to reference N. Moumen, P. Veillet, M.P. Pileni, Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. 149(1–2), 67–71 (1995)CrossRef N. Moumen, P. Veillet, M.P. Pileni, Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. 149(1–2), 67–71 (1995)CrossRef
21.
go back to reference V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)CrossRef V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)CrossRef
22.
go back to reference C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRef C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRef
23.
go back to reference T. Pannaparayil, S. Komarneni, Synthesis and characterization of ultrafine cobalt ferrites. IEEE Trans. Magn. 25(5), 4233–4235 (1989)CrossRef T. Pannaparayil, S. Komarneni, Synthesis and characterization of ultrafine cobalt ferrites. IEEE Trans. Magn. 25(5), 4233–4235 (1989)CrossRef
24.
go back to reference A. Franco, F.C. e Silva, High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96(17), 172505 (2010)CrossRef A. Franco, F.C. e Silva, High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96(17), 172505 (2010)CrossRef
25.
go back to reference A. Franco, T.E.P. Alves, E.C.O. Lima, E.S. Nunes, V. Zapf, Enhanced magnetization of nanoparticles of \(\text{Mg}_{x}\text{Fe}_{3-x}\text{O}_{4}\) (\(0.5 \le x \le 1.5\)) synthesized by combustion reaction. Appl. Phys. A 94(1), 131–137 (2008)CrossRef A. Franco, T.E.P. Alves, E.C.O. Lima, E.S. Nunes, V. Zapf, Enhanced magnetization of nanoparticles of \(\text{Mg}_{x}\text{Fe}_{3-x}\text{O}_{4}\) (\(0.5 \le x \le 1.5\)) synthesized by combustion reaction. Appl. Phys. A 94(1), 131–137 (2008)CrossRef
26.
go back to reference A. Franco, F.C. e Silva, V.S. Zapf, High temperature magnetic properties of \(\text{Co}_{1-x}\text{Mg}_{x}\text{Fe}_{2}\text{O}_{4}\) nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111(7), 07B530 (2012)CrossRef A. Franco, F.C. e Silva, V.S. Zapf, High temperature magnetic properties of \(\text{Co}_{1-x}\text{Mg}_{x}\text{Fe}_{2}\text{O}_{4}\) nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111(7), 07B530 (2012)CrossRef
27.
go back to reference M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, \(\text{ZnFe}_{2-x}\text{La}_{x}\text{O}_{4}\) nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)CrossRef M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, \(\text{ZnFe}_{2-x}\text{La}_{x}\text{O}_{4}\) nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)CrossRef
28.
go back to reference M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(11), 11691–11697 (2016)CrossRef M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(11), 11691–11697 (2016)CrossRef
29.
go back to reference Y. Xie, Y. Qian, W. Wang, S. Zhang, Y. Zhang, A benzene-thermal synthetic route to nanocrystalline GaN. Science 272(5270), 1926–1927 (1996)CrossRef Y. Xie, Y. Qian, W. Wang, S. Zhang, Y. Zhang, A benzene-thermal synthetic route to nanocrystalline GaN. Science 272(5270), 1926–1927 (1996)CrossRef
30.
go back to reference S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, Santi Maensiri, Nanocrystalline spinel ferrite (\(\text{MFe}_{2}\text{O}_{4}\), M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48(6), 2060–2065 (2013)CrossRef S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, Santi Maensiri, Nanocrystalline spinel ferrite (\(\text{MFe}_{2}\text{O}_{4}\), M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48(6), 2060–2065 (2013)CrossRef
31.
go back to reference Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Yong Qin, Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid State Chem. 178(7), 2394–2397 (2005)CrossRef Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Yong Qin, Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid State Chem. 178(7), 2394–2397 (2005)CrossRef
32.
go back to reference G. Demazeau, Solvothermal processes: a route to the stabilization of new materials. J. Mater. Chem. 9(1), 15–18 (1999)CrossRef G. Demazeau, Solvothermal processes: a route to the stabilization of new materials. J. Mater. Chem. 9(1), 15–18 (1999)CrossRef
33.
go back to reference K. Sue, K. Kimura, K. Arai, Hydrothermal synthesis of ZnO nanocrystals using microreactor. Mater. Lett. 58(25), 3229–3231 (2004)CrossRef K. Sue, K. Kimura, K. Arai, Hydrothermal synthesis of ZnO nanocrystals using microreactor. Mater. Lett. 58(25), 3229–3231 (2004)CrossRef
34.
go back to reference H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22(1), 151–152 (1967)CrossRef H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22(1), 151–152 (1967)CrossRef
35.
go back to reference A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Papers 61(3), 151–170 (2007)CrossRef A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Papers 61(3), 151–170 (2007)CrossRef
36.
go back to reference K. Sue, M. Suzuki, K. Arai, T. Ohashi, Haruo Ura, Keitaro Matsui, Yukiya Hakuta, Hiromichi Hayashi, Masaru Watanabe, Toshihiko Hiaki, Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem. 8(7), 634 (2006)CrossRef K. Sue, M. Suzuki, K. Arai, T. Ohashi, Haruo Ura, Keitaro Matsui, Yukiya Hakuta, Hiromichi Hayashi, Masaru Watanabe, Toshihiko Hiaki, Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem. 8(7), 634 (2006)CrossRef
37.
go back to reference C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef
38.
go back to reference R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727–1735 (1955)CrossRef R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727–1735 (1955)CrossRef
39.
go back to reference P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12, 593–601 (1931) P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12, 593–601 (1931)
40.
go back to reference L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRef L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRef
41.
go back to reference A.V. Ravindra, P. Padhan, W. Prellier, Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 161902 (2012)CrossRef A.V. Ravindra, P. Padhan, W. Prellier, Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 161902 (2012)CrossRef
42.
go back to reference B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 082406 (2013)CrossRef B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 082406 (2013)CrossRef
43.
go back to reference Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87(2), 290 (1952)CrossRef Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87(2), 290 (1952)CrossRef
44.
go back to reference B.H. Liu, J. Ding, Z.L. Dong, C.B. Boothroyd, J.H. Yin, J.B. Yi, Microstructural evolution and its influence on the magnetic properties of \(\text{CoFe}_{2}\text{O}_{4}\) powders during mechanical milling. Phys. Rev. B 74(18), 184427 (2006)CrossRef B.H. Liu, J. Ding, Z.L. Dong, C.B. Boothroyd, J.H. Yin, J.B. Yi, Microstructural evolution and its influence on the magnetic properties of \(\text{CoFe}_{2}\text{O}_{4}\) powders during mechanical milling. Phys. Rev. B 74(18), 184427 (2006)CrossRef
45.
go back to reference L. Kumar, P. Egan, M. Kar, Effect of non-magnetic substitution on the structural and magnetic properties of spinel cobalt ferrite (\(\text{CoFe}_{2-x}\text{Al}_{x}\text{O}_{4}\)) ceramics. J. Mater. Sci. Mater. Electron. 24(8), 2706–2715 (2013)CrossRef L. Kumar, P. Egan, M. Kar, Effect of non-magnetic substitution on the structural and magnetic properties of spinel cobalt ferrite (\(\text{CoFe}_{2-x}\text{Al}_{x}\text{O}_{4}\)) ceramics. J. Mater. Sci. Mater. Electron. 24(8), 2706–2715 (2013)CrossRef
46.
go back to reference L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of \(\text{Co}_1- x \text{RE}_{x}\text{Fe}_{2}\text{O}_{4}\) (RE: Nd, Eu) nanoparticles prepared via edta/eg assisted sol-gel synthesis. J. Alloys Compd. 662, 441–447 (2016)CrossRef L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of \(\text{Co}_1- x \text{RE}_{x}\text{Fe}_{2}\text{O}_{4}\) (RE: Nd, Eu) nanoparticles prepared via edta/eg assisted sol-gel synthesis. J. Alloys Compd. 662, 441–447 (2016)CrossRef
47.
go back to reference S. Chakraverty, M. Bandyopadhyay, Coercivity of magnetic nanoparticles: a stochastic model. J. Phys. Condens. Matter 19(21), 216201 (2007)CrossRef S. Chakraverty, M. Bandyopadhyay, Coercivity of magnetic nanoparticles: a stochastic model. J. Phys. Condens. Matter 19(21), 216201 (2007)CrossRef
48.
go back to reference A. Franco, V. Zapf, Temperature dependence of magnetic anisotropy in nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\). J. Magn. Magn. Mater. 320(5), 709–713 (2008)CrossRef A. Franco, V. Zapf, Temperature dependence of magnetic anisotropy in nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\). J. Magn. Magn. Mater. 320(5), 709–713 (2008)CrossRef
49.
go back to reference P. Gaunt, Magnetic viscosity and thermal activation energy. J. Appl. Phys. 59(12), 4129–4132 (1986)CrossRef P. Gaunt, Magnetic viscosity and thermal activation energy. J. Appl. Phys. 59(12), 4129–4132 (1986)CrossRef
50.
go back to reference J.F. Liu, H.L. Luo, On the coercive force and effective activation volume in magnetic materials. J. Magn. Magn. Mater. 94(1–2), 43–48 (1991)CrossRef J.F. Liu, H.L. Luo, On the coercive force and effective activation volume in magnetic materials. J. Magn. Magn. Mater. 94(1–2), 43–48 (1991)CrossRef
51.
go back to reference P. Gaunt, C.K. Mylvaganam, Domain-wall pinning and nucleation in \(\text{SmCo}_{5}\) sintered magnet alloys. Philos. Mag. B 44(5), 569–580 (1981)CrossRef P. Gaunt, C.K. Mylvaganam, Domain-wall pinning and nucleation in \(\text{SmCo}_{5}\) sintered magnet alloys. Philos. Mag. B 44(5), 569–580 (1981)CrossRef
52.
go back to reference U.S. Ram, D. Ng, P. Gaunt, Magnetic viscosity and domain wall pinning in an MnAlC permanent magnet. J. Magn. Magn. Mater. 50(2), 193–198 (1985)CrossRef U.S. Ram, D. Ng, P. Gaunt, Magnetic viscosity and domain wall pinning in an MnAlC permanent magnet. J. Magn. Magn. Mater. 50(2), 193–198 (1985)CrossRef
53.
go back to reference H.W. Zhang, C.B. Rong, J. Zhang, S.Y. Zhang, Bao gen Shen, Coercivity of isotropic nanocrystalline \(\text{Pr}_{12}\text{Fe}_{82}\text{B}_{6}\) ribbons. Phys. Rev. B 66(18), 184436 (2002)CrossRef H.W. Zhang, C.B. Rong, J. Zhang, S.Y. Zhang, Bao gen Shen, Coercivity of isotropic nanocrystalline \(\text{Pr}_{12}\text{Fe}_{82}\text{B}_{6}\) ribbons. Phys. Rev. B 66(18), 184436 (2002)CrossRef
54.
go back to reference H. Kronmuller, Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Status Solidi (b) 144(1), 385–396 (1987)CrossRef H. Kronmuller, Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Status Solidi (b) 144(1), 385–396 (1987)CrossRef
55.
go back to reference D. Givord, Q. Lu, M.F. Rossignol, Coercivity in Hard Magnetic Materials, in Science and Technology of Nanostructured Magnetic Materials. NATO ASI Series (Series B: Physics), vol 259, ed. by G.C. Hadjipanayis, G.A. Prinz (Springer, Boston, 1991), pp. 635–656CrossRef D. Givord, Q. Lu, M.F. Rossignol, Coercivity in Hard Magnetic Materials, in Science and Technology of Nanostructured Magnetic Materials. NATO ASI Series (Series B: Physics), vol 259, ed. by G.C. Hadjipanayis, G.A. Prinz (Springer, Boston, 1991), pp. 635–656CrossRef
56.
go back to reference X.C. Kou, H. Kronmuller, D. Givord, M.F. Rossignol, Coercivity mechanism of sintered \(\text{Pr}_{17}\text{Fe}_{75}\text{B}_{8}\) and \(\text{Pr}_{17}\text{Fe}_{53}\text{B}_{30}\) permanent magnets. Phys. Rev. B 50(6), 3849–3860 (1994)CrossRef X.C. Kou, H. Kronmuller, D. Givord, M.F. Rossignol, Coercivity mechanism of sintered \(\text{Pr}_{17}\text{Fe}_{75}\text{B}_{8}\) and \(\text{Pr}_{17}\text{Fe}_{53}\text{B}_{30}\) permanent magnets. Phys. Rev. B 50(6), 3849–3860 (1994)CrossRef
Metadata
Title
Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties
Authors
R. S. Melo
P. Banerjee
A. Franco Jr.
Publication date
06-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9602-2

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue