Skip to main content
Top
Published in: Microsystem Technologies 10/2016

06-08-2015 | Technical Paper

High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation

Authors: Geng Wang, Guoqiang Chen, Fuzhong Bai

Published in: Microsystem Technologies | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel composite control strategy is developed in this paper to compensate hysteresis, resonance and disturbances in a piezo-actuated nanopositioner. The control objective of the piezoelectric positioner is to achieve high tracking performance in terms of accuracy and speed. For this purpose, a Bouc–Wen model based hysteresis compensator is first applied to mitigate the hysteresis nonlinearity without the complex inverse hysteresis calculation. And then, the linear dynamic of the hysteresis compensated system is identified and inverted to account for the resonance. A model-based inversion feed-forward controller is designed to achieve high speed tracking. Afterwards, a high-gain feedback controller is designed based on a notch filter to handle the modeling inaccuracy and all kinds of disturbances. So, the feed-forward controller can be augmented to the feedback controller to realize high speed and precision tracking. The enhancement of tracking performance is demonstrated through several comparative experiments. The performance of 70 Hz bandwidth and 0.281 μm precision can be achieved, which validated the effectiveness of the proposed composite control scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al Janaideh M, Rakheja S, Su CY (2011) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans Mechatron 16(4):734–744CrossRef Al Janaideh M, Rakheja S, Su CY (2011) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans Mechatron 16(4):734–744CrossRef
go back to reference Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nanovisualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437CrossRef Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nanovisualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437CrossRef
go back to reference Braunsmann C, Schaffer TE (2010) High-speed atomic force microscopy for large scan sizes using small cantilevers. Nanotechnology 21:225705CrossRef Braunsmann C, Schaffer TE (2010) High-speed atomic force microscopy for large scan sizes using small cantilevers. Nanotechnology 21:225705CrossRef
go back to reference Chae KW, Kim W-B, Jeong YH (2011) A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator. Nanotechnology 22:335501CrossRef Chae KW, Kim W-B, Jeong YH (2011) A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator. Nanotechnology 22:335501CrossRef
go back to reference Chang S, Yi J, Shen Y (2009) Disturbance observer-based hysteresis compensation for piezoelectric actuators. In: Proceedings of American control conference, pp 4196–4201 Chang S, Yi J, Shen Y (2009) Disturbance observer-based hysteresis compensation for piezoelectric actuators. In: Proceedings of American control conference, pp 4196–4201
go back to reference Chen X, Li Y (2007) A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Trans Cybern 37(5):1271–1289CrossRef Chen X, Li Y (2007) A modified PSO structure resulting in high exploration ability with convergence guaranteed. IEEE Trans Cybern 37(5):1271–1289CrossRef
go back to reference Chen BM, Lee TH, Hang CC, Guo Y, Weerasmriya S (1999) An H-infinite almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Tran Autom Control 7(2):160–174 Chen BM, Lee TH, Hang CC, Guo Y, Weerasmriya S (1999) An H-infinite almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Tran Autom Control 7(2):160–174
go back to reference Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control 131(6):061101CrossRef Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control 131(6):061101CrossRef
go back to reference Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Meas Control 123(1):35–43CrossRef Croft D, Shed G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J Dyn Syst Meas Control 123(1):35–43CrossRef
go back to reference Garrett MC, Szuchi T, Kam KL et al (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control-Trans ASME 131(6):061101CrossRef Garrett MC, Szuchi T, Kam KL et al (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Control-Trans ASME 131(6):061101CrossRef
go back to reference Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Control Syst Technol 4(3):209–216CrossRef Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Control Syst Technol 4(3):209–216CrossRef
go back to reference Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Contr Syst Mag 17(3):69–79CrossRefMATH Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Contr Syst Mag 17(3):69–79CrossRefMATH
go back to reference Gozen BA, Ozdoganlar OB (2012) A method for open-loop control of dynamic motions of piezo-stack actuators. Sens Actuators A Phys 184:160–172CrossRef Gozen BA, Ozdoganlar OB (2012) A method for open-loop control of dynamic motions of piezo-stack actuators. Sens Actuators A Phys 184:160–172CrossRef
go back to reference Gu GY, Zhu LM (2011) Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens Actuators A Phys 165(2):202–209CrossRef Gu GY, Zhu LM (2011) Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens Actuators A Phys 165(2):202–209CrossRef
go back to reference Gu G, Zhu L (2013a) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuat A Phys 197:76–87CrossRef Gu G, Zhu L (2013a) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuat A Phys 197:76–87CrossRef
go back to reference Gu G-Y, Zhu L-M (2013b) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuators A Phys 197:76–87CrossRef Gu G-Y, Zhu L-M (2013b) Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation. Sens Actuators A Phys 197:76–87CrossRef
go back to reference Gu GY, Zhu LM, Su CY, Ding H (2013) Motion control of piezoelectric positioning stages: modeling, controller design and experimental evaluation. IEEE/ASME Trans Mechatron 18(5):1459–1471CrossRef Gu GY, Zhu LM, Su CY, Ding H (2013) Motion control of piezoelectric positioning stages: modeling, controller design and experimental evaluation. IEEE/ASME Trans Mechatron 18(5):1459–1471CrossRef
go back to reference Gu G, Zhu L, Su C (2014) Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity. Mechatronics 24(4):367–375CrossRef Gu G, Zhu L, Su C (2014) Integral resonant damping for high-bandwidth control of piezoceramic stack actuators with asymmetric hysteresis nonlinearity. Mechatronics 24(4):367–375CrossRef
go back to reference Higuchi T (2010) Next generation actuators leading breakthroughs. J Mech Sci Technol 24:13–18CrossRef Higuchi T (2010) Next generation actuators leading breakthroughs. J Mech Sci Technol 24:13–18CrossRef
go back to reference Huang D, Xu J-X, Venkataramanan V, The Cat Tuong Huynh (2014) High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans Industr Electron 61(2):1085CrossRef Huang D, Xu J-X, Venkataramanan V, The Cat Tuong Huynh (2014) High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Trans Industr Electron 61(2):1085CrossRef
go back to reference Humphris ADL, Miles MJ, Hobbs JK (2005) A mechanical microscope: high-speed atomic force microscopy. Appl Phys Lett 86:034106CrossRef Humphris ADL, Miles MJ, Hobbs JK (2005) A mechanical microscope: high-speed atomic force microscopy. Appl Phys Lett 86:034106CrossRef
go back to reference Leang KK, Devasia S (2007) Feedback-Linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Transac Control Syst Technol 15(5):927–935CrossRef Leang KK, Devasia S (2007) Feedback-Linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Transac Control Syst Technol 15(5):927–935CrossRef
go back to reference Leang KK, Zou Q, Devasia S (2009) Feedforward control of piezoactuators in atomic force microscope systems inversion-based compensation for dynamics and hysteresis. IEEE Control Syst Mag 29(1):70–82MathSciNetCrossRef Leang KK, Zou Q, Devasia S (2009) Feedforward control of piezoactuators in atomic force microscope systems inversion-based compensation for dynamics and hysteresis. IEEE Control Syst Mag 29(1):70–82MathSciNetCrossRef
go back to reference Liaw HC, Shirinzadeh B (2009) Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation. IEEE/ASME Trans Mechatron 15(4):517–527CrossRef Liaw HC, Shirinzadeh B (2009) Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation. IEEE/ASME Trans Mechatron 15(4):517–527CrossRef
go back to reference Lei L et al (2013) Discrete composite control of piezoelectric actuators for high-speed and precision scanning. IEEE Trans Ind Inf 9(2):859–868CrossRef Lei L et al (2013) Discrete composite control of piezoelectric actuators for high-speed and precision scanning. IEEE Trans Ind Inf 9(2):859–868CrossRef
go back to reference Lin C-M, Li H-Y (2014) Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans Fuzzy Syst 22(4):791–802CrossRef Lin C-M, Li H-Y (2014) Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans Fuzzy Syst 22(4):791–802CrossRef
go back to reference Liu L, Tan KK, Lee TH (2014) Multirate-based composite controller design of piezoelectric actuators for high-bandwidth and precision tracking. IEEE Trans Control Syst Technol 22:2CrossRef Liu L, Tan KK, Lee TH (2014) Multirate-based composite controller design of piezoelectric actuators for high-bandwidth and precision tracking. IEEE Trans Control Syst Technol 22:2CrossRef
go back to reference Mahmood I, Moheimani S (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80:063705CrossRef Mahmood I, Moheimani S (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80:063705CrossRef
go back to reference Pantazi A, Sebastian A, Cherubini G, Lantz M, Pozidis H, Rothuizen H, Eleftheriou E (2007) Control of MEMS-based scanning-probe data-storage devices. IEEE Trans Control Syst Technol 15:824–841CrossRef Pantazi A, Sebastian A, Cherubini G, Lantz M, Pozidis H, Rothuizen H, Eleftheriou E (2007) Control of MEMS-based scanning-probe data-storage devices. IEEE Trans Control Syst Technol 15:824–841CrossRef
go back to reference Rakotondrabe M (2011) Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431CrossRef Rakotondrabe M (2011) Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431CrossRef
go back to reference Shieh HJ, Hsu CH (2008) An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Trans Ind Electron 55(4):1729–1738CrossRef Shieh HJ, Hsu CH (2008) An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Trans Ind Electron 55(4):1729–1738CrossRef
go back to reference Tian F, Li K, Wang J, Wang H (2014) Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator. High Power Laser Part Beams 26(1):59–63 Tian F, Li K, Wang J, Wang H (2014) Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator. High Power Laser Part Beams 26(1):59–63
go back to reference Tuma T, Lygeros J, Kartik V, Sebastian A, Pantazi A (2012) High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23:185501CrossRef Tuma T, Lygeros J, Kartik V, Sebastian A, Pantazi A (2012) High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23:185501CrossRef
go back to reference Vettiger P, Cross G, Despont M et al (2002) The millipede-nanotechnology entering data storage. IEEE Trans Nanotechnol 1:39–55CrossRef Vettiger P, Cross G, Despont M et al (2002) The millipede-nanotechnology entering data storage. IEEE Trans Nanotechnol 1:39–55CrossRef
go back to reference Viswamurthy S, Ganguli R (2007) Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sens Actuators A Phys 135(2):801–810CrossRef Viswamurthy S, Ganguli R (2007) Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sens Actuators A Phys 135(2):801–810CrossRef
go back to reference Vorbringer-Dorozhovets N, Hausotte T, Manske E, Shen JC, Jager G (2011) Novel control scheme for a high-speed meteorological scanning probe microscope. Meas Sci Technol 22(9):094012CrossRef Vorbringer-Dorozhovets N, Hausotte T, Manske E, Shen JC, Jager G (2011) Novel control scheme for a high-speed meteorological scanning probe microscope. Meas Sci Technol 22(9):094012CrossRef
go back to reference Wang G, Rao C (2015) Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater Struct 24(3):035019CrossRef Wang G, Rao C (2015) Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater Struct 24(3):035019CrossRef
go back to reference Wang G, Guan C, Zhang X, Zhou H, Rao C (2014) Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model. Opt Laser Technol 57:26–31CrossRef Wang G, Guan C, Zhang X, Zhou H, Rao C (2014) Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model. Opt Laser Technol 57:26–31CrossRef
go back to reference Geng W, Jianwei N, Fuzhong B (2015) High precision tracking control of piezoelectric fast steering mirror based on self-tuning PID algorithm. J Henan Polytech Univ (Natural Science) accept Geng W, Jianwei N, Fuzhong B (2015) High precision tracking control of piezoelectric fast steering mirror based on self-tuning PID algorithm. J Henan Polytech Univ (Natural Science) accept
go back to reference Wong PK, Xu Q, Vong CM, Wong HC (2012) Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine. IEEE Trans Ind Electron 59(4):1988–2001CrossRef Wong PK, Xu Q, Vong CM, Wong HC (2012) Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine. IEEE Trans Ind Electron 59(4):1988–2001CrossRef
go back to reference Wu Y, Zou Q (2009) Robust inversion-based 2-DOF control design for output tracking: piezoelectric-actuator example. IEEE Trans Control Syst Technol 17(5):1069–1082CrossRef Wu Y, Zou Q (2009) Robust inversion-based 2-DOF control design for output tracking: piezoelectric-actuator example. IEEE Trans Control Syst Technol 17(5):1069–1082CrossRef
go back to reference Zhenyan W, Zhen Z, Jianqin M (2012) Precision tracking control of piezoelectric actuator based on Bouc–Wen hysteresis compensator. Electron Lett 48(23):1459–1460CrossRef Zhenyan W, Zhen Z, Jianqin M (2012) Precision tracking control of piezoelectric actuator based on Bouc–Wen hysteresis compensator. Electron Lett 48(23):1459–1460CrossRef
Metadata
Title
High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation
Authors
Geng Wang
Guoqiang Chen
Fuzhong Bai
Publication date
06-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 10/2016
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2638-9

Other articles of this Issue 10/2016

Microsystem Technologies 10/2016 Go to the issue