Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2024

01-03-2023 | Technical Article

High-Temperature Deformation Behavior of Superalloy XH43

Authors: Rakesh Ranjan, Rohit Kumar Gupta, Ravi Ranjan Kumar, S. V. S. Narayana Murty, M. R. Suresh, Ashish Mallick

Published in: Journal of Materials Engineering and Performance | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With an aim to study the hot workability and establish the safe working zone for Ni-based superalloy XH43, cylindrical specimens were subjected to hot isothermal compression test at different temperatures (1173-1373 K) and strain rates (10−3-10 s−1) using Gleeble thermo-mechanical simulator. Strain rate sensitivity and Zener–Hollomon parameter have been calculated. Processing maps and constitutive equations have been developed and verified with the experimental results. It is observed that dynamic recrystallization (DRX) is the principal flow softening mechanism. Strain rate sensitivity obtained through constant strain rate test (CSRT) m and through cyclic strain rate jump test (CSRJT) m’ is found to have close match initially up to 0.3 strain. Subsequently at higher strain m has marginal reduction, whereas m’ decreases drastically to low value. This is attributed to dynamic softening at higher strain, which is predominant in case of CSRJT where cyclic test is assisting the softening process. Activation energy Q obtained through CSRT is found to be slightly higher than activation energy (Q’) obtained through dynamic test like CSRJT and jump temperature test (JTT). This indicates less dragging force for deformation of alloy in dynamic tests, which is closer to industrial practice. It is also found that alloy has good workability in the temperature range of 1173-1373 K at strain rates of 0.01-0.001 s−1. In this range of parameters, the alloy follows the constitutive equation very closely.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Cozar and A. Pineau, Morphology of Y’ and Y" Precipitates and Thermal Stability of Inconel 718 Type Alloys, Metall. Trans., 1973, 4, p 47–59.CrossRef R. Cozar and A. Pineau, Morphology of Y’ and Y" Precipitates and Thermal Stability of Inconel 718 Type Alloys, Metall. Trans., 1973, 4, p 47–59.CrossRef
2.
go back to reference S. Azadian, L.Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 53, p 7–16.CrossRef S. Azadian, L.Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 53, p 7–16.CrossRef
4.
go back to reference C. Sellars and W.M. Tegart, Hot Workability, Int. Melall. Rev., 1972, 17, p 1–24.CrossRef C. Sellars and W.M. Tegart, Hot Workability, Int. Melall. Rev., 1972, 17, p 1–24.CrossRef
6.
go back to reference Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modelling of Dynamic Material Behaviour in Hot Deformation: Forging of Ti–6242, Metall. Trans. A, 1984, 15(10), p 1883.CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modelling of Dynamic Material Behaviour in Hot Deformation: Forging of Ti–6242, Metall. Trans. A, 1984, 15(10), p 1883.CrossRef
8.
go back to reference S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu, Hot Deformation and Processing Maps of Inconel 690 Superalloy, J. Nucl. Mater., 2011, 410, p 52–58.CrossRef S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu, Hot Deformation and Processing Maps of Inconel 690 Superalloy, J. Nucl. Mater., 2011, 410, p 52–58.CrossRef
9.
go back to reference X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behaviour of a typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577.CrossRef X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behaviour of a typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577.CrossRef
10.
go back to reference Q.M. Guo, D.F. Li, and S.L. Gu, Microstructural Models of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Manuf. Process., 2012, 27, p 990–995.CrossRef Q.M. Guo, D.F. Li, and S.L. Gu, Microstructural Models of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Manuf. Process., 2012, 27, p 990–995.CrossRef
11.
go back to reference P.J. Wray, Strain-Rate Dependence of the Tensile Failure of a Polycrystalline Material at Elevated Temperatures, J. Appl. Phys., 1969, 40, p 4018–4029.CrossRef P.J. Wray, Strain-Rate Dependence of the Tensile Failure of a Polycrystalline Material at Elevated Temperatures, J. Appl. Phys., 1969, 40, p 4018–4029.CrossRef
12.
go back to reference R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metallurgical Trans. A, 1981, 12A, p 1089–1097.CrossRef R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metallurgical Trans. A, 1981, 12A, p 1089–1097.CrossRef
14.
go back to reference J.C. Malas and V. Seetharaman, Using Material Behaviour Models to Develop Process Control Strategies, JOM, 1992, 44, p 8–13.CrossRef J.C. Malas and V. Seetharaman, Using Material Behaviour Models to Develop Process Control Strategies, JOM, 1992, 44, p 8–13.CrossRef
16.
go back to reference F. Montheillet, J.J. Jonas, and K.W. Neale, Modelling of Dynamic Material Behaviour: A Critical Evaluation of the Dissipater Power Co-Content Approach, Metall. Mater. Trans. A, 1996, 27A, p 232–235.CrossRef F. Montheillet, J.J. Jonas, and K.W. Neale, Modelling of Dynamic Material Behaviour: A Critical Evaluation of the Dissipater Power Co-Content Approach, Metall. Mater. Trans. A, 1996, 27A, p 232–235.CrossRef
17.
go back to reference X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou, The Investigation on the Unstable Flow Behaviour of Ti17 alloy in α+β Phase Field Using Processing Map, Mater. Sci. Eng. A, 2012, 550, p 131–137.CrossRef X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou, The Investigation on the Unstable Flow Behaviour of Ti17 alloy in α+β Phase Field Using Processing Map, Mater. Sci. Eng. A, 2012, 550, p 131–137.CrossRef
18.
go back to reference P.W. Schilke and R.C. Schwant, Alloy 706 use, Process Optimization and Future Directions for GE Gas Turbine Rotor Materials, Superalloys 718, 625, 706 and Various Derivatives, Ed: E.A Loria, Miner. Metals Mater. Soc., Warrendale, 2001, p. 25–34. P.W. Schilke and R.C. Schwant, Alloy 706 use, Process Optimization and Future Directions for GE Gas Turbine Rotor Materials, Superalloys 718, 625, 706 and Various Derivatives, Ed: E.A Loria, Miner. Metals Mater. Soc., Warrendale, 2001, p. 25–34.
19.
go back to reference P.W. Schilke, J.J. Pepe,, and R.C. Schwant, Alloy 706 Metallurgy and Turbine Wheel Application, Superalloys, 718, 625, 706 and Various Derivatives, Ed: EA Loria, Miner. Metals Mater. Soc., Warrendale, 1994, p. 1–12. P.W. Schilke, J.J. Pepe,, and R.C. Schwant, Alloy 706 Metallurgy and Turbine Wheel Application, Superalloys, 718, 625, 706 and Various Derivatives, Ed: EA Loria, Miner. Metals Mater. Soc., Warrendale, 1994, p. 1–12.
20.
go back to reference V. Kindrachuk, N. Wanderka, J. Banhart, D. Mukherji, D. Genovese, and J. Rösler, Effect of Rhenium ADDITION on the Microstructure of the Superalloy Inconel 706, Acta Mater., 2008, 56(7), p 1609–1618.CrossRef V. Kindrachuk, N. Wanderka, J. Banhart, D. Mukherji, D. Genovese, and J. Rösler, Effect of Rhenium ADDITION on the Microstructure of the Superalloy Inconel 706, Acta Mater., 2008, 56(7), p 1609–1618.CrossRef
21.
go back to reference J.H. Moll, G.N. Mania, and D.R. Muzyka, The Microstructure of 706, a New Fe-Ni-Base Superalloy, Metall. Trans., 1971, 2(8), p 2143–2151.CrossRef J.H. Moll, G.N. Mania, and D.R. Muzyka, The Microstructure of 706, a New Fe-Ni-Base Superalloy, Metall. Trans., 1971, 2(8), p 2143–2151.CrossRef
22.
go back to reference N. Srinivasan and Y.V.R.K. Prasad, Microstructural Control in Hot Working of IN-718 Superalloy Using Processing Map, Metall. Mater. Trans., 1994, 25A, p 2276. N. Srinivasan and Y.V.R.K. Prasad, Microstructural Control in Hot Working of IN-718 Superalloy Using Processing Map, Metall. Mater. Trans., 1994, 25A, p 2276.
23.
go back to reference D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure evolution and nucleation Mechanisms of Dynamic Recrystallization in Hot-deformed Inconel 625 Superalloy, J. Mater. Design, 2011, 32(2), p 696–705.CrossRef D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure evolution and nucleation Mechanisms of Dynamic Recrystallization in Hot-deformed Inconel 625 Superalloy, J. Mater. Design, 2011, 32(2), p 696–705.CrossRef
25.
go back to reference Y.C. Lin, D.-X. Wen, M.-S. Chen, and X.-M. Chen, A Novel Unified Dislocation Density-Based Model for Hot Deformation Behavior of a Nickel-Based Superalloy under Dynamic Recrystallization Conditions, Appl. Phys. A, Mater. Sci. Proc., 2016, 122, p 805.CrossRef Y.C. Lin, D.-X. Wen, M.-S. Chen, and X.-M. Chen, A Novel Unified Dislocation Density-Based Model for Hot Deformation Behavior of a Nickel-Based Superalloy under Dynamic Recrystallization Conditions, Appl. Phys. A, Mater. Sci. Proc., 2016, 122, p 805.CrossRef
27.
go back to reference L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy, J. Mater. Eng. Perform., 2016, 25, p 1394–1406.CrossRef L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy, J. Mater. Eng. Perform., 2016, 25, p 1394–1406.CrossRef
28.
go back to reference C.I. Garcia, G.D. Wang, D.E. Camus, E.A. Loria, and A.J. De Ardo, Hot Deformation Behavior of Superalloy 718, Miner. Metals Mater. Soc., 1994, 718, p 293–302. C.I. Garcia, G.D. Wang, D.E. Camus, E.A. Loria, and A.J. De Ardo, Hot Deformation Behavior of Superalloy 718, Miner. Metals Mater. Soc., 1994, 718, p 293–302.
30.
go back to reference F.-L. Sui, L.-X. Xua, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440.CrossRef F.-L. Sui, L.-X. Xua, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440.CrossRef
31.
go back to reference S.V.S. Narayana Murty and B. Nageswara Rao, On the Development of Instability Criteria during hot Working with Reference to IN 718, Mater. Sci. Eng., 1998, 254(1–2), p 76–82.CrossRef S.V.S. Narayana Murty and B. Nageswara Rao, On the Development of Instability Criteria during hot Working with Reference to IN 718, Mater. Sci. Eng., 1998, 254(1–2), p 76–82.CrossRef
32.
go back to reference A.N. Jinoop, V. Anil Kumar, C.P. Paul, R. Ranjan, and K.S. Ranjan, Hot Deformation Behaviour of Hastelloy-X Performs Built Using Directed Energy Deposition-Based Laser Additive Manufacturing, Mater. Lett., 2020, 270, p 127737.CrossRef A.N. Jinoop, V. Anil Kumar, C.P. Paul, R. Ranjan, and K.S. Ranjan, Hot Deformation Behaviour of Hastelloy-X Performs Built Using Directed Energy Deposition-Based Laser Additive Manufacturing, Mater. Lett., 2020, 270, p 127737.CrossRef
33.
go back to reference R.K. Gupta, V. Anil Kumar, J. Nitesh Raj, Bhavanish Kumar Singh, and A.K. Kanjarla, Hot Deformation Dtudies on βo Stabilized TiAl Alloy Made Through Ingot Metallurgy Route, Trans. Indian Inst Met, 2021, 74, p 2977.CrossRef R.K. Gupta, V. Anil Kumar, J. Nitesh Raj, Bhavanish Kumar Singh, and A.K. Kanjarla, Hot Deformation Dtudies on βo Stabilized TiAl Alloy Made Through Ingot Metallurgy Route, Trans. Indian Inst Met, 2021, 74, p 2977.CrossRef
34.
go back to reference Y. Wang, J. Wang, J. Dong, A. Lid, Z. Lie, G. Xiea, and L. Lou, Hot Deformation Characteristics and Hot Working Window of as-cast Large-Tonnage GH3535 Superalloy Ingot, J. Mater. Sci. Technolog., 2018, 34, p 2439–2446.CrossRef Y. Wang, J. Wang, J. Dong, A. Lid, Z. Lie, G. Xiea, and L. Lou, Hot Deformation Characteristics and Hot Working Window of as-cast Large-Tonnage GH3535 Superalloy Ingot, J. Mater. Sci. Technolog., 2018, 34, p 2439–2446.CrossRef
35.
go back to reference V. Anil Kumar, S.V.S.N. Murty, R.K. Gupta, A. Gourav Rao, and M.J.N.V. Prasad, Effect of Boron on Microstructure Evolution and Hot Tensile Deformation Behavior of Ti-5Al-5V-5Mo-1Cr-1Fe Alloy, J. Alloys Compd., 2020, 831, p 154672.CrossRef V. Anil Kumar, S.V.S.N. Murty, R.K. Gupta, A. Gourav Rao, and M.J.N.V. Prasad, Effect of Boron on Microstructure Evolution and Hot Tensile Deformation Behavior of Ti-5Al-5V-5Mo-1Cr-1Fe Alloy, J. Alloys Compd., 2020, 831, p 154672.CrossRef
36.
go back to reference G. Dilip, C. Kumar, V.A. Kumar, R.K. Gupta, S.V.S. Narayana Murty, and B.P. Kashyap, Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-Cr-Mo-V Grade Steel, Metall. Mater. Trans., 2019, 50, p 161.CrossRef G. Dilip, C. Kumar, V.A. Kumar, R.K. Gupta, S.V.S. Narayana Murty, and B.P. Kashyap, Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-Cr-Mo-V Grade Steel, Metall. Mater. Trans., 2019, 50, p 161.CrossRef
40.
go back to reference N. D’Souza, W. Li, C. Argyrakis, G.D. West, and C.D. Slater, On the Evolution of Primary Gamma Prime Precipitates During High Temperature and High Strain Rate Deformation and Subsequent Heat Treatment in the Ni-Based Superalloy, RR1000, Metall. Mater. Trans. A., 2019, 50, p p4205-4222.CrossRef N. D’Souza, W. Li, C. Argyrakis, G.D. West, and C.D. Slater, On the Evolution of Primary Gamma Prime Precipitates During High Temperature and High Strain Rate Deformation and Subsequent Heat Treatment in the Ni-Based Superalloy, RR1000, Metall. Mater. Trans. A., 2019, 50, p p4205-4222.CrossRef
41.
go back to reference L. Wang, F. Liu, Q. Zuo, J.J. Cheng, and C.F. Chen, Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy, J. Mater. Eng. Perform., 2017, 26, p 392–406.CrossRef L. Wang, F. Liu, Q. Zuo, J.J. Cheng, and C.F. Chen, Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy, J. Mater. Eng. Perform., 2017, 26, p 392–406.CrossRef
42.
go back to reference Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modelling of fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96.CrossRef Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modelling of fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96.CrossRef
46.
go back to reference B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, Pergamon Mater. Series, 2007, 4, p 75. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, Pergamon Mater. Series, 2007, 4, p 75.
48.
go back to reference A.H. Chokshi, A.K. Mukherji, and T.G. Langdon, Superplasticity in Advanced Materials, Mater. Sci. Eng. R. Rep., 1993, 10(6), p 237–274.CrossRef A.H. Chokshi, A.K. Mukherji, and T.G. Langdon, Superplasticity in Advanced Materials, Mater. Sci. Eng. R. Rep., 1993, 10(6), p 237–274.CrossRef
49.
go back to reference A. Smolej, B. Skaza, and M. Fazarinc, Determination of the Strain-Rate Sensitivity and the Activation Energy of Deformation in the Superplastic Aluminium Alloy Al-Mg-Mn-Sc, Mater. Geoenviron., 2009, 56(4), p 389–399. A. Smolej, B. Skaza, and M. Fazarinc, Determination of the Strain-Rate Sensitivity and the Activation Energy of Deformation in the Superplastic Aluminium Alloy Al-Mg-Mn-Sc, Mater. Geoenviron., 2009, 56(4), p 389–399.
51.
go back to reference N. Ravichandran and Y.V.R.K. Prasad, Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper, Mater. Sci. Eng., 1992, 156(2), p 195–204.CrossRef N. Ravichandran and Y.V.R.K. Prasad, Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper, Mater. Sci. Eng., 1992, 156(2), p 195–204.CrossRef
52.
go back to reference Q. Guo, D. Li, S. Guo, H. Peng, and Hu. Jie, The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy, J. Nucl. Mater., 2011, 414(3), p 440–450.CrossRef Q. Guo, D. Li, S. Guo, H. Peng, and Hu. Jie, The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy, J. Nucl. Mater., 2011, 414(3), p 440–450.CrossRef
53.
go back to reference D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Design, 2011, 32(2), p 696–705.CrossRef D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Design, 2011, 32(2), p 696–705.CrossRef
Metadata
Title
High-Temperature Deformation Behavior of Superalloy XH43
Authors
Rakesh Ranjan
Rohit Kumar Gupta
Ravi Ranjan Kumar
S. V. S. Narayana Murty
M. R. Suresh
Ashish Mallick
Publication date
01-03-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-07955-w

Other articles of this Issue 2/2024

Journal of Materials Engineering and Performance 2/2024 Go to the issue

Premium Partners