Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2015

01-05-2015

Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions

Authors: Jianglin Liu, Weidong Zeng, Yanchun Zhu, Hanqing Yu, Yongqing Zhao

Published in: Journal of Materials Engineering and Performance | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Isothermal compression tests of TC4-DT titanium alloy at the deformation temperature ranging from 1181 to 1341 K covering α + β phase field and β-phase field, the strain rate ranging from 0.01 to 10.0 s−1 and the height reduction of 70% were conducted on a Gleeble-3500 thermo-mechanical simulator. The experimental true stress-true strain data were employed to develop the strain-compensated Arrhenius-type flow stress model and artificial neural network (ANN) model; the predictability of two models was quantified in terms of correlation coefficient (R) and average absolute relative error (AARE). The R and AARE for the Arrhenius-type flow stress model were 0.9952 and 5.78%, which were poorer linear relation and more deviation than 0.9997 and 1.04% for the feed-forward back-propagation ANN model, respectively. The results indicated that the trained ANN model was more efficient and accurate in predicting the flow behavior for TC4-DT titanium alloy at elevated temperature deformation than the strain-compensated Arrhenius-type constitutive equations. The constitutive relationship compensating strain could track the experimental data across the whole hot working domain other than that at high strain rates (≥1 s−1). The microstructure analysis illustrated that the deformation mechanisms existed at low strain rates (≤0.1 s−1), where dynamic recrystallization occurred, were far different from that at high strain rates (≥1 s−1) that presented bands of flow localization and cracking along grain boundary.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114CrossRef R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114CrossRef
2.
go back to reference Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, and Y.-S. Kwon, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti–6Al–4V Alloy, J. Alloys Compd., 2014, 603(1), p 207–212 Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, and Y.-S. Kwon, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti–6Al–4V Alloy, J. Alloys Compd., 2014, 603(1), p 207–212
3.
go back to reference N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloys Compd., 2009, 486(1–2), p 162–167CrossRef N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloys Compd., 2009, 486(1–2), p 162–167CrossRef
4.
go back to reference P. Guo, Y. Zhao, W. Zeng, and Q. Hong, The Effect of Microstructure on the Mechanical Properties of TC4-DT Titanium Alloys, Mater. Sci. Eng. A, 2013, 563, p 106–111CrossRef P. Guo, Y. Zhao, W. Zeng, and Q. Hong, The Effect of Microstructure on the Mechanical Properties of TC4-DT Titanium Alloys, Mater. Sci. Eng. A, 2013, 563, p 106–111CrossRef
5.
go back to reference X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, and Z.L. Zhao, Constitutive Equations for High Temperature Flow Stress of TC4-DT Alloy Incorporating Strain, Strain Rate and Temperature, Mater. Des., 2013, 50, p 198–206CrossRef X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, and Z.L. Zhao, Constitutive Equations for High Temperature Flow Stress of TC4-DT Alloy Incorporating Strain, Strain Rate and Temperature, Mater. Des., 2013, 50, p 198–206CrossRef
6.
go back to reference X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β Treatments on Microstructures and Mechanical Properties of TC4-DT Titanium Alloy, Mater. Sci. Eng. A, 2012, 533, p 55–63CrossRef X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β Treatments on Microstructures and Mechanical Properties of TC4-DT Titanium Alloy, Mater. Sci. Eng. A, 2012, 533, p 55–63CrossRef
7.
go back to reference Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response Of Equiaxed (α + β) Preform of Ti–6Al–4V: Commercial vs. ELI, Grade, J. Mater. Process. Technol., 2001, 108(3), p 320–327CrossRef Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response Of Equiaxed (α + β) Preform of Ti–6Al–4V: Commercial vs. ELI, Grade, J. Mater. Process. Technol., 2001, 108(3), p 320–327CrossRef
8.
go back to reference P. Haupt and Th Kersten, On the Modelling of Anisotropic Material Behaviour in Viscoplasticity, Int. J. Plast, 2003, 19(11), p 1885–1915CrossRef P. Haupt and Th Kersten, On the Modelling of Anisotropic Material Behaviour in Viscoplasticity, Int. J. Plast, 2003, 19(11), p 1885–1915CrossRef
9.
go back to reference M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509(3), p 948–952CrossRef M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509(3), p 948–952CrossRef
10.
go back to reference J.L. Liu, W.D. Zeng, Y.J. Lai, and Z.Q. Jia, Constitutive Model of Ti17 Titanium Alloy with Lamellar-Type Initial Microstructure During Hot Deformation Based on Orthogonal Analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394CrossRef J.L. Liu, W.D. Zeng, Y.J. Lai, and Z.Q. Jia, Constitutive Model of Ti17 Titanium Alloy with Lamellar-Type Initial Microstructure During Hot Deformation Based on Orthogonal Analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394CrossRef
11.
go back to reference G.R. Ebrahimi, A.R. Maldar, R. Ebrahimi, and A. Davoodia, Effect of Thermomechanical Parameters on Dynamically Recrystallized Grain Size of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509(6), p 2703–2708CrossRef G.R. Ebrahimi, A.R. Maldar, R. Ebrahimi, and A. Davoodia, Effect of Thermomechanical Parameters on Dynamically Recrystallized Grain Size of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509(6), p 2703–2708CrossRef
12.
go back to reference B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R. Ashok Gandhie, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509(15), p 4992–4998CrossRef B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R. Ashok Gandhie, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509(15), p 4992–4998CrossRef
13.
go back to reference J. Xiao, D.S. Li, X.Q. Li, and T.S. Deng, Constitutive Modeling and Microstructure Change of Ti–6Al–4V During the Hot Tensile Deformation, J. Alloys Compd., 2012, 541, p 346–352CrossRef J. Xiao, D.S. Li, X.Q. Li, and T.S. Deng, Constitutive Modeling and Microstructure Change of Ti–6Al–4V During the Hot Tensile Deformation, J. Alloys Compd., 2012, 541, p 346–352CrossRef
14.
go back to reference Y.Q. Ning, Z.K. Yao, H.Z. Guo, and M.W. Fu, Hot Deformation Behavior and Hot Working Characteristic of Nickel-Base Electron Beam Weldments, J. Alloys Compd., 2014, 584, p 494–502CrossRef Y.Q. Ning, Z.K. Yao, H.Z. Guo, and M.W. Fu, Hot Deformation Behavior and Hot Working Characteristic of Nickel-Base Electron Beam Weldments, J. Alloys Compd., 2014, 584, p 494–502CrossRef
15.
go back to reference F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57(8), p 759–762CrossRef F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57(8), p 759–762CrossRef
16.
go back to reference Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef
17.
go back to reference Y. Sun, W.D. Zeng, Y.Q. Zhao, Y.L. Qi, Y.F. Han, Y.T. Shao, and X. Ma, Modeling of Constitutive Relationship of Ti600 Alloy Using BP Artificial Neural Network, Rare Metal Mater. Eng., 2011, 40(2), p 220–224 ((in Chinese)) Y. Sun, W.D. Zeng, Y.Q. Zhao, Y.L. Qi, Y.F. Han, Y.T. Shao, and X. Ma, Modeling of Constitutive Relationship of Ti600 Alloy Using BP Artificial Neural Network, Rare Metal Mater. Eng., 2011, 40(2), p 220–224 ((in Chinese))
18.
go back to reference Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, X. Ma, and Y.F. Han, Constructing Processing Map Of Ti40 Alloy Using Artificial Neural Network, Trans. Nonferr. Metals Soc. China, 2011, 21(1), p 159–165CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, X. Ma, and Y.F. Han, Constructing Processing Map Of Ti40 Alloy Using Artificial Neural Network, Trans. Nonferr. Metals Soc. China, 2011, 21(1), p 159–165CrossRef
19.
go back to reference N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49(1), p 386–391CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49(1), p 386–391CrossRef
20.
go back to reference Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef
21.
go back to reference Y.F. Han, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Sun, and X. Ma, Modeling of Constitutive Relationship of Ti–25 V–15Cr–0.2Si Alloy During Hot Deformation Process by Fuzzy-Neural Network, Mater. Des., 2010, 31(9), p 4380–4385CrossRef Y.F. Han, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Sun, and X. Ma, Modeling of Constitutive Relationship of Ti–25 V–15Cr–0.2Si Alloy During Hot Deformation Process by Fuzzy-Neural Network, Mater. Des., 2010, 31(9), p 4380–4385CrossRef
22.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr–1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528(15), p 5204–5211CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr–1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528(15), p 5204–5211CrossRef
23.
go back to reference T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4 V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1–2), p 184–194CrossRef T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4 V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1–2), p 184–194CrossRef
24.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo(P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo(P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef
25.
go back to reference Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef
26.
go back to reference G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13–14), p 4774–4782CrossRef G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13–14), p 4774–4782CrossRef
27.
go back to reference Z.W. Yuan, F.G. Li, H.J. Qiao, and G.L. Li, Constitutive Flow Behavior and Hot Workability of AerMet100 at Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23(6), p 1981–1999CrossRef Z.W. Yuan, F.G. Li, H.J. Qiao, and G.L. Li, Constitutive Flow Behavior and Hot Workability of AerMet100 at Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23(6), p 1981–1999CrossRef
28.
go back to reference X.P. Liang, Y. Liu, H.Z. Li, C.X. Zhou, and G.F. Xu, Constitutive Relationship for High Temperature Deformation of Powder Metallurgy Ti–47Al–2Cr–2Nb–0.2W Alloy, Mater. Des., 2012, 37(1), p 40–47CrossRef X.P. Liang, Y. Liu, H.Z. Li, C.X. Zhou, and G.F. Xu, Constitutive Relationship for High Temperature Deformation of Powder Metallurgy Ti–47Al–2Cr–2Nb–0.2W Alloy, Mater. Des., 2012, 37(1), p 40–47CrossRef
Metadata
Title
Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions
Authors
Jianglin Liu
Weidong Zeng
Yanchun Zhu
Hanqing Yu
Yongqing Zhao
Publication date
01-05-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1456-7

Other articles of this Issue 5/2015

Journal of Materials Engineering and Performance 5/2015 Go to the issue

Premium Partners