Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2015

01.05.2015

Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions

verfasst von: Jianglin Liu, Weidong Zeng, Yanchun Zhu, Hanqing Yu, Yongqing Zhao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isothermal compression tests of TC4-DT titanium alloy at the deformation temperature ranging from 1181 to 1341 K covering α + β phase field and β-phase field, the strain rate ranging from 0.01 to 10.0 s−1 and the height reduction of 70% were conducted on a Gleeble-3500 thermo-mechanical simulator. The experimental true stress-true strain data were employed to develop the strain-compensated Arrhenius-type flow stress model and artificial neural network (ANN) model; the predictability of two models was quantified in terms of correlation coefficient (R) and average absolute relative error (AARE). The R and AARE for the Arrhenius-type flow stress model were 0.9952 and 5.78%, which were poorer linear relation and more deviation than 0.9997 and 1.04% for the feed-forward back-propagation ANN model, respectively. The results indicated that the trained ANN model was more efficient and accurate in predicting the flow behavior for TC4-DT titanium alloy at elevated temperature deformation than the strain-compensated Arrhenius-type constitutive equations. The constitutive relationship compensating strain could track the experimental data across the whole hot working domain other than that at high strain rates (≥1 s−1). The microstructure analysis illustrated that the deformation mechanisms existed at low strain rates (≤0.1 s−1), where dynamic recrystallization occurred, were far different from that at high strain rates (≥1 s−1) that presented bands of flow localization and cracking along grain boundary.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114CrossRef R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1–2), p 103–114CrossRef
2.
Zurück zum Zitat Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, and Y.-S. Kwon, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti–6Al–4V Alloy, J. Alloys Compd., 2014, 603(1), p 207–212 Y. Kim, E.-P. Kim, Y.-B. Song, S.H. Lee, and Y.-S. Kwon, Microstructure and Mechanical Properties of Hot Isostatically Pressed Ti–6Al–4V Alloy, J. Alloys Compd., 2014, 603(1), p 207–212
3.
Zurück zum Zitat N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloys Compd., 2009, 486(1–2), p 162–167CrossRef N. Poondla, T.S. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloys Compd., 2009, 486(1–2), p 162–167CrossRef
4.
Zurück zum Zitat P. Guo, Y. Zhao, W. Zeng, and Q. Hong, The Effect of Microstructure on the Mechanical Properties of TC4-DT Titanium Alloys, Mater. Sci. Eng. A, 2013, 563, p 106–111CrossRef P. Guo, Y. Zhao, W. Zeng, and Q. Hong, The Effect of Microstructure on the Mechanical Properties of TC4-DT Titanium Alloys, Mater. Sci. Eng. A, 2013, 563, p 106–111CrossRef
5.
Zurück zum Zitat X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, and Z.L. Zhao, Constitutive Equations for High Temperature Flow Stress of TC4-DT Alloy Incorporating Strain, Strain Rate and Temperature, Mater. Des., 2013, 50, p 198–206CrossRef X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, and Z.L. Zhao, Constitutive Equations for High Temperature Flow Stress of TC4-DT Alloy Incorporating Strain, Strain Rate and Temperature, Mater. Des., 2013, 50, p 198–206CrossRef
6.
Zurück zum Zitat X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β Treatments on Microstructures and Mechanical Properties of TC4-DT Titanium Alloy, Mater. Sci. Eng. A, 2012, 533, p 55–63CrossRef X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β Treatments on Microstructures and Mechanical Properties of TC4-DT Titanium Alloy, Mater. Sci. Eng. A, 2012, 533, p 55–63CrossRef
7.
Zurück zum Zitat Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response Of Equiaxed (α + β) Preform of Ti–6Al–4V: Commercial vs. ELI, Grade, J. Mater. Process. Technol., 2001, 108(3), p 320–327CrossRef Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Influence of Oxygen Content on the Forging Response Of Equiaxed (α + β) Preform of Ti–6Al–4V: Commercial vs. ELI, Grade, J. Mater. Process. Technol., 2001, 108(3), p 320–327CrossRef
8.
Zurück zum Zitat P. Haupt and Th Kersten, On the Modelling of Anisotropic Material Behaviour in Viscoplasticity, Int. J. Plast, 2003, 19(11), p 1885–1915CrossRef P. Haupt and Th Kersten, On the Modelling of Anisotropic Material Behaviour in Viscoplasticity, Int. J. Plast, 2003, 19(11), p 1885–1915CrossRef
9.
Zurück zum Zitat M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509(3), p 948–952CrossRef M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509(3), p 948–952CrossRef
10.
Zurück zum Zitat J.L. Liu, W.D. Zeng, Y.J. Lai, and Z.Q. Jia, Constitutive Model of Ti17 Titanium Alloy with Lamellar-Type Initial Microstructure During Hot Deformation Based on Orthogonal Analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394CrossRef J.L. Liu, W.D. Zeng, Y.J. Lai, and Z.Q. Jia, Constitutive Model of Ti17 Titanium Alloy with Lamellar-Type Initial Microstructure During Hot Deformation Based on Orthogonal Analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394CrossRef
11.
Zurück zum Zitat G.R. Ebrahimi, A.R. Maldar, R. Ebrahimi, and A. Davoodia, Effect of Thermomechanical Parameters on Dynamically Recrystallized Grain Size of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509(6), p 2703–2708CrossRef G.R. Ebrahimi, A.R. Maldar, R. Ebrahimi, and A. Davoodia, Effect of Thermomechanical Parameters on Dynamically Recrystallized Grain Size of AZ91 Magnesium Alloy, J. Alloys Compd., 2011, 509(6), p 2703–2708CrossRef
12.
Zurück zum Zitat B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R. Ashok Gandhie, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509(15), p 4992–4998CrossRef B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R. Ashok Gandhie, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509(15), p 4992–4998CrossRef
13.
Zurück zum Zitat J. Xiao, D.S. Li, X.Q. Li, and T.S. Deng, Constitutive Modeling and Microstructure Change of Ti–6Al–4V During the Hot Tensile Deformation, J. Alloys Compd., 2012, 541, p 346–352CrossRef J. Xiao, D.S. Li, X.Q. Li, and T.S. Deng, Constitutive Modeling and Microstructure Change of Ti–6Al–4V During the Hot Tensile Deformation, J. Alloys Compd., 2012, 541, p 346–352CrossRef
14.
Zurück zum Zitat Y.Q. Ning, Z.K. Yao, H.Z. Guo, and M.W. Fu, Hot Deformation Behavior and Hot Working Characteristic of Nickel-Base Electron Beam Weldments, J. Alloys Compd., 2014, 584, p 494–502CrossRef Y.Q. Ning, Z.K. Yao, H.Z. Guo, and M.W. Fu, Hot Deformation Behavior and Hot Working Characteristic of Nickel-Base Electron Beam Weldments, J. Alloys Compd., 2014, 584, p 494–502CrossRef
15.
Zurück zum Zitat F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57(8), p 759–762CrossRef F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57(8), p 759–762CrossRef
16.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef
17.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao, Y.L. Qi, Y.F. Han, Y.T. Shao, and X. Ma, Modeling of Constitutive Relationship of Ti600 Alloy Using BP Artificial Neural Network, Rare Metal Mater. Eng., 2011, 40(2), p 220–224 ((in Chinese)) Y. Sun, W.D. Zeng, Y.Q. Zhao, Y.L. Qi, Y.F. Han, Y.T. Shao, and X. Ma, Modeling of Constitutive Relationship of Ti600 Alloy Using BP Artificial Neural Network, Rare Metal Mater. Eng., 2011, 40(2), p 220–224 ((in Chinese))
18.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, X. Ma, and Y.F. Han, Constructing Processing Map Of Ti40 Alloy Using Artificial Neural Network, Trans. Nonferr. Metals Soc. China, 2011, 21(1), p 159–165CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, X. Ma, and Y.F. Han, Constructing Processing Map Of Ti40 Alloy Using Artificial Neural Network, Trans. Nonferr. Metals Soc. China, 2011, 21(1), p 159–165CrossRef
19.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49(1), p 386–391CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49(1), p 386–391CrossRef
20.
Zurück zum Zitat Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef Y.C. Zhu, W.D. Zeng, Y. Sun, F. Feng, and Y.G. Zhou, Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50(5), p 1785–1790CrossRef
21.
Zurück zum Zitat Y.F. Han, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Sun, and X. Ma, Modeling of Constitutive Relationship of Ti–25 V–15Cr–0.2Si Alloy During Hot Deformation Process by Fuzzy-Neural Network, Mater. Des., 2010, 31(9), p 4380–4385CrossRef Y.F. Han, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Sun, and X. Ma, Modeling of Constitutive Relationship of Ti–25 V–15Cr–0.2Si Alloy During Hot Deformation Process by Fuzzy-Neural Network, Mater. Des., 2010, 31(9), p 4380–4385CrossRef
22.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr–1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528(15), p 5204–5211CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr–1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528(15), p 5204–5211CrossRef
23.
Zurück zum Zitat T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4 V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1–2), p 184–194CrossRef T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti–6Al–4 V with an Equiaxed α–β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284(1–2), p 184–194CrossRef
24.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo(P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo(P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRef
25.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1–2), p 88–92CrossRef
26.
Zurück zum Zitat G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13–14), p 4774–4782CrossRef G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13–14), p 4774–4782CrossRef
27.
Zurück zum Zitat Z.W. Yuan, F.G. Li, H.J. Qiao, and G.L. Li, Constitutive Flow Behavior and Hot Workability of AerMet100 at Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23(6), p 1981–1999CrossRef Z.W. Yuan, F.G. Li, H.J. Qiao, and G.L. Li, Constitutive Flow Behavior and Hot Workability of AerMet100 at Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23(6), p 1981–1999CrossRef
28.
Zurück zum Zitat X.P. Liang, Y. Liu, H.Z. Li, C.X. Zhou, and G.F. Xu, Constitutive Relationship for High Temperature Deformation of Powder Metallurgy Ti–47Al–2Cr–2Nb–0.2W Alloy, Mater. Des., 2012, 37(1), p 40–47CrossRef X.P. Liang, Y. Liu, H.Z. Li, C.X. Zhou, and G.F. Xu, Constitutive Relationship for High Temperature Deformation of Powder Metallurgy Ti–47Al–2Cr–2Nb–0.2W Alloy, Mater. Des., 2012, 37(1), p 40–47CrossRef
Metadaten
Titel
Hot Deformation Behavior and Flow Stress Prediction of TC4-DT Alloy in Single-Phase Region and Dual-Phase Regions
verfasst von
Jianglin Liu
Weidong Zeng
Yanchun Zhu
Hanqing Yu
Yongqing Zhao
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1456-7

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Engineering and Performance 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.