Skip to main content
Top
Published in: International Journal of Material Forming 5/2019

16-11-2018 | Original Research

Hot working of Ti-6Al-4V with a complex initial microstructure

Authors: Michael O. Bodunrin, Lesley H. Chown, Josias W. van der Merwe, Kenneth K. Alaneme

Published in: International Journal of Material Forming | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hot deformation behaviour of wrought Ti-6Al-4V, with an initial microstructure of equiaxed and elongated α phase and intergranular β, was investigated. Isothermal hot compression testing was performed using a Gleeble 3500 thermomechanical simulator at strain rates of 0.01–10 s−1, up to a total strain of 0.6, and at temperatures of 750–950 °C, i.e. in the α + β phase region. The stress-strain data were used to develop constitutive equations and processing maps so that the stress exponent, activation energy and the most advantageous processing conditions for deforming the alloy could be determined. Microstructural examination for validation of the processing maps was carried out by optical microscopy and scanning electron microscopy. The average activation energy (Q) and stress exponent (n) at all strains were typical of dynamic recrystallisation values reported for α + β titanium alloys. The processing maps showed different features at different strains. There was no domain of instability when samples were deformed to a total strain of 0.2 but regions of instability were observed at strains of 0.5 and 0.6. The optimum processing conditions were identified at ~900 °C/0.05 s−1 and 940 °C/1.7 s−1(0.2 strain); 900 °C/0.02 s−1 and 945 °C/1.5 s−1 (0.5 strain); and 800 °C/0.01 s−1 and 940 °C/1.2 s−1 (0.6 strain). Power dissipation efficiency values and microstructural features confirmed that the main deformation mechanism corresponded to dynamic globularisation of the α phase. Increased transformation of α-Ti to β-Ti also enhanced flow softening at higher deformation temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1):103–114CrossRef Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1):103–114CrossRef
2.
go back to reference Farthing TW (1987) The development of titanium and its alloys. Clin Mater 2(1):15–32CrossRef Farthing TW (1987) The development of titanium and its alloys. Clin Mater 2(1):15–32CrossRef
3.
go back to reference Lütjering G, Williams JC (2007) Engineering Materials: Titanium, Second. Berlin Heidelberg. Springer, New York Lütjering G, Williams JC (2007) Engineering Materials: Titanium, Second. Berlin Heidelberg. Springer, New York
4.
go back to reference Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691CrossRef Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691CrossRef
5.
go back to reference Polmear IJ (2005) 6 - Titanium alloys, in Light alloys, 4th edn. Butterworth-Heinemann, Oxford, pp 299–365 Polmear IJ (2005) 6 - Titanium alloys, in Light alloys, 4th edn. Butterworth-Heinemann, Oxford, pp 299–365
6.
go back to reference Dieter GE, Kuhn HA, and Semiatin SL (2003) Handbook of workability and process design, ASM International Dieter GE, Kuhn HA, and Semiatin SL (2003) Handbook of workability and process design, ASM International
7.
go back to reference Sen I, Kottada RS, Ramamurty U (2010) High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater Sci Eng A 527(23):6157–6165CrossRef Sen I, Kottada RS, Ramamurty U (2010) High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater Sci Eng A 527(23):6157–6165CrossRef
8.
go back to reference Semiatin SL, Seetharaman V, Weiss I (1997) The thermomechanical processing of alpha/beta titanium alloys. JOM 49(6):33–39CrossRef Semiatin SL, Seetharaman V, Weiss I (1997) The thermomechanical processing of alpha/beta titanium alloys. JOM 49(6):33–39CrossRef
9.
go back to reference Poletti C, Warchomicka F, Degischer HP (2010) Local deformation of Ti6Al4V modified 1 wt% B and 0.1 wt% C. Mater Sci Eng A 527(4–5):1109–1116CrossRef Poletti C, Warchomicka F, Degischer HP (2010) Local deformation of Ti6Al4V modified 1 wt% B and 0.1 wt% C. Mater Sci Eng A 527(4–5):1109–1116CrossRef
10.
go back to reference Sellars CM, McTegart WJ (1972) Hot workability. Int Metall Rev 17(1):1–24CrossRef Sellars CM, McTegart WJ (1972) Hot workability. Int Metall Rev 17(1):1–24CrossRef
11.
go back to reference McQueen HJ, Bourell DL (2012) Hot workability of metals and alloys. JOM 39(9):28–35CrossRef McQueen HJ, Bourell DL (2012) Hot workability of metals and alloys. JOM 39(9):28–35CrossRef
12.
go back to reference Porntadawit J, Uthaisangsuk V, Choungthong P (2014) Modeling of flow behaviour of Ti–6Al–4V alloy at elevated temperatures. Mater Sci Eng A 599:212–222CrossRef Porntadawit J, Uthaisangsuk V, Choungthong P (2014) Modeling of flow behaviour of Ti–6Al–4V alloy at elevated temperatures. Mater Sci Eng A 599:212–222CrossRef
13.
go back to reference Lin YC, Zhao CY, Chen MS, Chen DD (2016) A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Appl Phys A Mater Sci Process 122(8):716CrossRef Lin YC, Zhao CY, Chen MS, Chen DD (2016) A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Appl Phys A Mater Sci Process 122(8):716CrossRef
14.
go back to reference Guo L, Fan X, Yu G, Yang H (2016) Microstructure control techniques in primary hot working of titanium alloy bars: a review. Chin J Aeronaut 29(1):30–40CrossRef Guo L, Fan X, Yu G, Yang H (2016) Microstructure control techniques in primary hot working of titanium alloy bars: a review. Chin J Aeronaut 29(1):30–40CrossRef
15.
go back to reference Sen I, Tamirisakandala S, Miracle DB, Ramamurty U (2007) Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys. Acta Mater 55(15):4983–4993CrossRef Sen I, Tamirisakandala S, Miracle DB, Ramamurty U (2007) Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys. Acta Mater 55(15):4983–4993CrossRef
16.
go back to reference Souza PM, Beladi H, Rolfe B, Singh R, Hodgson PD (2015) Softening behavior of Ti6Al4V alloy during hot deformation. Mater Sci Forum 828–829:407–412CrossRef Souza PM, Beladi H, Rolfe B, Singh R, Hodgson PD (2015) Softening behavior of Ti6Al4V alloy during hot deformation. Mater Sci Forum 828–829:407–412CrossRef
17.
go back to reference Lin YC, Chen XM (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32(4):1733–1759CrossRef Lin YC, Chen XM (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32(4):1733–1759CrossRef
18.
go back to reference Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Int Mater Rev 43(6):243–258CrossRef Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Int Mater Rev 43(6):243–258CrossRef
19.
go back to reference Sellars CM (1990) Modelling microstructural development during hot rolling. Mater Sci Technol 6(11):1072–1081CrossRef Sellars CM (1990) Modelling microstructural development during hot rolling. Mater Sci Technol 6(11):1072–1081CrossRef
20.
go back to reference Peng X, Guo H, Shi Z, Qin C, Zhao Z (2013) Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature. Mater Des 50:198–206CrossRef Peng X, Guo H, Shi Z, Qin C, Zhao Z (2013) Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature. Mater Des 50:198–206CrossRef
21.
go back to reference Peng W, Zeng W, Wang Q, Yu H (2013) Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des 51:95–104CrossRef Peng W, Zeng W, Wang Q, Yu H (2013) Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des 51:95–104CrossRef
22.
go back to reference Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32CrossRef Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32CrossRef
23.
go back to reference Johnson JR and Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th international symposium on ballistics, Den Haag, the Netherlands 21:541–547 Johnson JR and Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th international symposium on ballistics, Den Haag, the Netherlands 21:541–547
24.
go back to reference Khan AS, Sung Suh Y, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloy. Int J Plast 20(12):2233–2248MATHCrossRef Khan AS, Sung Suh Y, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloy. Int J Plast 20(12):2233–2248MATHCrossRef
25.
go back to reference Lin YC, Liu G (2010) A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature. Comput Mater Sci 48(1):54–58CrossRef Lin YC, Liu G (2010) A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature. Comput Mater Sci 48(1):54–58CrossRef
26.
go back to reference Lin YC, Chen MS, Zhong J (2008) Constitutive modelling for elevated temperature flow behaviour of 42CrMo steel. Comput Mater Sci 42(3):470–477CrossRef Lin YC, Chen MS, Zhong J (2008) Constitutive modelling for elevated temperature flow behaviour of 42CrMo steel. Comput Mater Sci 42(3):470–477CrossRef
27.
go back to reference Akbari Z, Mirzadeh H, Cabrera JM (2015) A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater Des 77:126–131CrossRef Akbari Z, Mirzadeh H, Cabrera JM (2015) A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Mater Des 77:126–131CrossRef
28.
go back to reference Cai J, Wang K, Zhai P, Li F, Yang J (2014) A modified Johnson-cook constitutive equation to predict hot deformation behaviour of Ti-6Al-4V alloy. J Mater Eng Perform 24(1):32–44CrossRef Cai J, Wang K, Zhai P, Li F, Yang J (2014) A modified Johnson-cook constitutive equation to predict hot deformation behaviour of Ti-6Al-4V alloy. J Mater Eng Perform 24(1):32–44CrossRef
29.
go back to reference Nayan N, Singh G, Murty SVSN, Jha AK, Pant B, George KM, Ramamurty U (2014) Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy. Intermetallics 55:145–153CrossRef Nayan N, Singh G, Murty SVSN, Jha AK, Pant B, George KM, Ramamurty U (2014) Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy. Intermetallics 55:145–153CrossRef
30.
go back to reference Peng W, Zeng W, Wang Q, Yu H (2013) Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map. Mater Sci Eng A 571:116–122CrossRef Peng W, Zeng W, Wang Q, Yu H (2013) Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map. Mater Sci Eng A 571:116–122CrossRef
31.
go back to reference Prasad YVRK, Seshacharyulu T (1998) Processing maps for hot working of titanium alloys. Mater Sci Eng A 243(1–2):82–88CrossRef Prasad YVRK, Seshacharyulu T (1998) Processing maps for hot working of titanium alloys. Mater Sci Eng A 243(1–2):82–88CrossRef
32.
go back to reference Murty SVSN, Rao BN, Kashyap BP (2002) Development and validation of a processing map for zirconium alloys. Model Simul Mater Sci Eng 10(5):530–520CrossRef Murty SVSN, Rao BN, Kashyap BP (2002) Development and validation of a processing map for zirconium alloys. Model Simul Mater Sci Eng 10(5):530–520CrossRef
33.
go back to reference Ding R, Guo ZX, Wilson A (2002) Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing. Mater Sci Eng A 327(2):233–245CrossRef Ding R, Guo ZX, Wilson A (2002) Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing. Mater Sci Eng A 327(2):233–245CrossRef
34.
go back to reference Souza PM, Beladi H, Singh R, Rolfe B, Hodgson PD (2015) Constitutive analysis of hot deformation behavior of a Ti6Al4V alloy using physical based model. Mater Sci Eng A 648:265–273CrossRef Souza PM, Beladi H, Singh R, Rolfe B, Hodgson PD (2015) Constitutive analysis of hot deformation behavior of a Ti6Al4V alloy using physical based model. Mater Sci Eng A 648:265–273CrossRef
35.
go back to reference Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2000) Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations. Mater Sci Eng A 284(1–2):184–194CrossRef Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2000) Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations. Mater Sci Eng A 284(1–2):184–194CrossRef
36.
go back to reference Seshacharyulu T, Medeiros SC, Morgan JT, Malas JC, Frazier WG, Prasad YVRK (2000) Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Mater Sci Eng A 279(1–2):289–299CrossRef Seshacharyulu T, Medeiros SC, Morgan JT, Malas JC, Frazier WG, Prasad YVRK (2000) Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Mater Sci Eng A 279(1–2):289–299CrossRef
37.
go back to reference Seshacharyulu T, Medeiros SC, Frazier WG and Prasad YVRK (2002) Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater Sci Eng A 325(1–2):112–125 Seshacharyulu T, Medeiros SC, Frazier WG and Prasad YVRK (2002) Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater Sci Eng A 325(1–2):112–125
38.
go back to reference Guan RG, Je YT, Zhao ZY, Lee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater Des 36:796–803CrossRef Guan RG, Je YT, Zhao ZY, Lee CS (2012) Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process. Mater Des 36:796–803CrossRef
39.
go back to reference Warchomicka F, Poletti C, Stockinger M (2011) Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr. Mater Sci Eng A 528(28):8277–8285CrossRef Warchomicka F, Poletti C, Stockinger M (2011) Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr. Mater Sci Eng A 528(28):8277–8285CrossRef
40.
go back to reference Poletti C, Germain L, Warchomicka F, Dikovits M, Mitsche S (2016) Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation. Mater Sci Eng A 651:280–290CrossRef Poletti C, Germain L, Warchomicka F, Dikovits M, Mitsche S (2016) Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation. Mater Sci Eng A 651:280–290CrossRef
41.
go back to reference Xu Y, Yang XJ, Jiang XX, He Y, Du DN (2014) Hot deformation behavior of Ti-6Al-4V alloy with a transitional microstructure in the isothermal hot compression. Adv Mater Res 1019:273–279CrossRef Xu Y, Yang XJ, Jiang XX, He Y, Du DN (2014) Hot deformation behavior of Ti-6Al-4V alloy with a transitional microstructure in the isothermal hot compression. Adv Mater Res 1019:273–279CrossRef
42.
go back to reference Roebuck B, Lord JD, Brooks M, Loveday MS, Sellars CM, Evans RW (2006) Measurement of flow stress in hot axisymmetric compression tests. Mater High Temp 23(2):59–83CrossRef Roebuck B, Lord JD, Brooks M, Loveday MS, Sellars CM, Evans RW (2006) Measurement of flow stress in hot axisymmetric compression tests. Mater High Temp 23(2):59–83CrossRef
43.
go back to reference Prasad YVRK, Rao KP and Sasidhara S (2015) Hot working guide: a compendium of processing maps. ASM International Prasad YVRK, Rao KP and Sasidhara S (2015) Hot working guide: a compendium of processing maps. ASM International
44.
go back to reference Davis JR (2004) Tensile Testing, 2nd edn. ASM International Davis JR (2004) Tensile Testing, 2nd edn. ASM International
45.
go back to reference Vander Voort G (2014) Metallographic preparation of titanium and its alloys. Vacaero Vander Voort G (2014) Metallographic preparation of titanium and its alloys. Vacaero
46.
go back to reference Duan Y, Li P, Xue K, Zhang Q, Wang X (2007) Flow behaviour and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Metals Soc China 17(6):1199–1204CrossRef Duan Y, Li P, Xue K, Zhang Q, Wang X (2007) Flow behaviour and microstructure evolution of TB8 alloy during hot deformation process. Trans Nonferrous Metals Soc China 17(6):1199–1204CrossRef
48.
go back to reference Jia W, Zeng W, Zhou Y, Liu J, Wang Q (2011) High-temperature deformation behaviour of Ti60 titanium alloy. Mater Sci Eng A 528(12):4068–4074CrossRef Jia W, Zeng W, Zhou Y, Liu J, Wang Q (2011) High-temperature deformation behaviour of Ti60 titanium alloy. Mater Sci Eng A 528(12):4068–4074CrossRef
49.
go back to reference Peng X, Guo H, Shi Z, Qin C, Zhao Z, Yao Z (2014) Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Mater Sci Eng A 605:80–88CrossRef Peng X, Guo H, Shi Z, Qin C, Zhao Z, Yao Z (2014) Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Mater Sci Eng A 605:80–88CrossRef
50.
go back to reference Fan XG, Zhang Y, Gao PF, Lei ZN, Zhan M (2017) Deformation behaviour and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field. Mater Sci Eng A 694:24–32CrossRef Fan XG, Zhang Y, Gao PF, Lei ZN, Zhan M (2017) Deformation behaviour and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field. Mater Sci Eng A 694:24–32CrossRef
51.
go back to reference Philippart I, Rack HJ (1998) High temperature dynamic yielding in metastable Ti–6.8 Mo–4.5 F–1.5 Al. Mater Sci Eng A 243(1):196–200CrossRef Philippart I, Rack HJ (1998) High temperature dynamic yielding in metastable Ti–6.8 Mo–4.5 F–1.5 Al. Mater Sci Eng A 243(1):196–200CrossRef
53.
go back to reference Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 47(13):3705–3720CrossRef Nemat-Nasser S, Guo WG, Cheng JY (1999) Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 47(13):3705–3720CrossRef
54.
go back to reference Prasad K, Varma VK (2008) Serrated flow behaviour in a near alpha titanium alloy IMI 834. Mater Sci Eng A 486(1):158–166CrossRef Prasad K, Varma VK (2008) Serrated flow behaviour in a near alpha titanium alloy IMI 834. Mater Sci Eng A 486(1):158–166CrossRef
55.
go back to reference Chuan W, Liang H (2018) Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum 156:384–401CrossRef Chuan W, Liang H (2018) Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region. Vacuum 156:384–401CrossRef
56.
go back to reference Zeyfang R, Conrad H (1971) Deformation dynamics of a b.c.c. titanium alloy (15.2 at. % Mo) below 650°K (0.4 tm). Acta Metall 19(10):985–990CrossRef Zeyfang R, Conrad H (1971) Deformation dynamics of a b.c.c. titanium alloy (15.2 at. % Mo) below 650°K (0.4 tm). Acta Metall 19(10):985–990CrossRef
57.
go back to reference Lin YH, Hu KH, Kao FH, Wang SH, Yang JR, Lin CK (2011) Dynamic strain aging in low cycle fatigue of duplex titanium alloys. Mater Sci Eng A 528(13):4381–4389CrossRef Lin YH, Hu KH, Kao FH, Wang SH, Yang JR, Lin CK (2011) Dynamic strain aging in low cycle fatigue of duplex titanium alloys. Mater Sci Eng A 528(13):4381–4389CrossRef
58.
go back to reference Zhao D (1993) Temperature correction in compression tests. J Mater Process Technol 36(4):467–471CrossRef Zhao D (1993) Temperature correction in compression tests. J Mater Process Technol 36(4):467–471CrossRef
59.
go back to reference Goetz RL, Semiatin SL (2001) The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform 10(6):710–717CrossRef Goetz RL, Semiatin SL (2001) The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform 10(6):710–717CrossRef
60.
go back to reference Jia W, Zeng W, Han Y, Liu J, Zhou Y, Wang Q (2011) Prediction of flow stress in isothermal compression of Ti60 alloy using an adaptive network-based fuzzy inference system. Mater Des 32(10):4676–4683CrossRef Jia W, Zeng W, Han Y, Liu J, Zhou Y, Wang Q (2011) Prediction of flow stress in isothermal compression of Ti60 alloy using an adaptive network-based fuzzy inference system. Mater Des 32(10):4676–4683CrossRef
61.
go back to reference Castellanos J, Rieiro I, Carsí M, Muñoz J, El Mehtedi M, Ruano AO (2009) Analysis of adiabatic heating and its influence on the Garofalo equation parameters of a high nitrogen steel. Mater Sci Eng A 517(1–2):191–196CrossRef Castellanos J, Rieiro I, Carsí M, Muñoz J, El Mehtedi M, Ruano AO (2009) Analysis of adiabatic heating and its influence on the Garofalo equation parameters of a high nitrogen steel. Mater Sci Eng A 517(1–2):191–196CrossRef
62.
go back to reference Soltani A (2013) Effect of Adiabatic Heating on Strain Induced Phase Transformations in Stainless Steels, Dissertation, Tempere University of Technology Soltani A (2013) Effect of Adiabatic Heating on Strain Induced Phase Transformations in Stainless Steels, Dissertation, Tempere University of Technology
63.
go back to reference Zaera R, Rodríguez-Martínez JA, Rittel D (2013) On the Taylor–Quinney coefficient in dynamically phase transforming materials, application to 304 stainless steel. Int J Plast 40:185–201CrossRef Zaera R, Rodríguez-Martínez JA, Rittel D (2013) On the Taylor–Quinney coefficient in dynamically phase transforming materials, application to 304 stainless steel. Int J Plast 40:185–201CrossRef
64.
go back to reference Rittel D, Wang ZG (2008) Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys. Mech Mater 40(8):629–635CrossRef Rittel D, Wang ZG (2008) Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys. Mech Mater 40(8):629–635CrossRef
65.
go back to reference Pérez-Castellanos JL, Rusinek A (2012) Temperature increase associated with plastic deformation under dynamic compression: application to aluminium alloy Al 6082. J Theor Appl Mech 50:377–398 Pérez-Castellanos JL, Rusinek A (2012) Temperature increase associated with plastic deformation under dynamic compression: application to aluminium alloy Al 6082. J Theor Appl Mech 50:377–398
66.
go back to reference Briottet L, Jonas JJ, Montheillet F (1996) A mechanical interpretation of the activation energy of high temperature deformation in two phase materials. Acta Mater 44(4):1665–1672CrossRef Briottet L, Jonas JJ, Montheillet F (1996) A mechanical interpretation of the activation energy of high temperature deformation in two phase materials. Acta Mater 44(4):1665–1672CrossRef
67.
go back to reference Chen HQ, Lin HZ, Guo L, Cao CX (2007) Hot deformation behavior and microstructure evolution of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si with an equiaxed α+β starting structure. Mater Sci Forum 546–549:1383–1388CrossRef Chen HQ, Lin HZ, Guo L, Cao CX (2007) Hot deformation behavior and microstructure evolution of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si with an equiaxed α+β starting structure. Mater Sci Forum 546–549:1383–1388CrossRef
68.
go back to reference Xia Y, Long S, Zhou Y, Zhao J, Wang T, Zhou J (2016) Identification for the Optimal Working Parameters of Ti-6Al-4V-0.1Ru Alloy in a Wide Deformation Condition Range by Processing Maps Based on DMM. Mater Res 19:1449–1460CrossRef Xia Y, Long S, Zhou Y, Zhao J, Wang T, Zhou J (2016) Identification for the Optimal Working Parameters of Ti-6Al-4V-0.1Ru Alloy in a Wide Deformation Condition Range by Processing Maps Based on DMM. Mater Res 19:1449–1460CrossRef
69.
go back to reference Zong YY, Shan DB, Xu M, Li Y (2009) Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol 209(4):1988–1994CrossRef Zong YY, Shan DB, Xu M, Li Y (2009) Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol 209(4):1988–1994CrossRef
70.
go back to reference Momeni A, Abbasi SM (2010) Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Mater Des 31(8):3599–3604CrossRef Momeni A, Abbasi SM (2010) Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Mater Des 31(8):3599–3604CrossRef
71.
go back to reference Chen H, Cao C, Guo L, Lin H (2008) Hot deformation mechanism and microstructure evolution of TC11 titanium alloy in β field. Trans Nonferrous Metals Soc China 18(5):1021–1027CrossRef Chen H, Cao C, Guo L, Lin H (2008) Hot deformation mechanism and microstructure evolution of TC11 titanium alloy in β field. Trans Nonferrous Metals Soc China 18(5):1021–1027CrossRef
72.
go back to reference Perez PA, Nakajima H, Dyment F (2003) Diffusion in α-Ti and Zr. Mater Trans 44(1):2–13CrossRef Perez PA, Nakajima H, Dyment F (2003) Diffusion in α-Ti and Zr. Mater Trans 44(1):2–13CrossRef
73.
go back to reference Cai J, Li F, Liu T, Chen B, He M (2011) Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Mater Des 32(3):1144–1151CrossRef Cai J, Li F, Liu T, Chen B, He M (2011) Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Mater Des 32(3):1144–1151CrossRef
74.
go back to reference Yang LC, Pan YT, Chen IG, Lin DY (2015) Constitutive relationship modeling and characterization of flow behavior under hot working for Fe–Cr–Ni–W–cu–co super-austenitic stainless steel. Metals 5(3):1717–1731CrossRef Yang LC, Pan YT, Chen IG, Lin DY (2015) Constitutive relationship modeling and characterization of flow behavior under hot working for Fe–Cr–Ni–W–cu–co super-austenitic stainless steel. Metals 5(3):1717–1731CrossRef
75.
go back to reference Liu J, Zeng W, Lai Y, Jia Z (2014) Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis. Mater Sci Eng A 597:387–394CrossRef Liu J, Zeng W, Lai Y, Jia Z (2014) Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis. Mater Sci Eng A 597:387–394CrossRef
76.
go back to reference Mirzadeh H (2015) A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress. Metall Mater Trans A 46(9):4027–4037CrossRef Mirzadeh H (2015) A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress. Metall Mater Trans A 46(9):4027–4037CrossRef
77.
go back to reference Mirzadeh H (2015) Constitutive modelling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mech Mater 85:66–79CrossRef Mirzadeh H (2015) Constitutive modelling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mech Mater 85:66–79CrossRef
78.
go back to reference Gao CY, Zhang LC, Yan HX (2011) A new constitutive model for HCP metals. Mater Sci Eng 528(13–14):4445–4452CrossRef Gao CY, Zhang LC, Yan HX (2011) A new constitutive model for HCP metals. Mater Sci Eng 528(13–14):4445–4452CrossRef
79.
go back to reference Balasundar I, Raghu T, Kashyap BP (2013) Modelling the hot working behavior of near-α titanium alloy IMI 834. Prog Nat Sci Mater Int 23(6):598–607CrossRef Balasundar I, Raghu T, Kashyap BP (2013) Modelling the hot working behavior of near-α titanium alloy IMI 834. Prog Nat Sci Mater Int 23(6):598–607CrossRef
80.
go back to reference Balasundar I, Raghu T, Kashyap BP (2014) Hot working and geometric dynamic recrystallisation behaviour of a near-α titanium alloy with acicular microstructure. Mater Sci Eng A 600:135–144CrossRef Balasundar I, Raghu T, Kashyap BP (2014) Hot working and geometric dynamic recrystallisation behaviour of a near-α titanium alloy with acicular microstructure. Mater Sci Eng A 600:135–144CrossRef
81.
go back to reference Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS (2013) Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333. Mater Des 49:945–952CrossRef Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS (2013) Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333. Mater Des 49:945–952CrossRef
82.
go back to reference Huang LJ, Geng L, Li AB, Cui XP, Li HZ, Wang GS (2009) Characteristics of hot compression behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A 505(1–2):136–143CrossRef Huang LJ, Geng L, Li AB, Cui XP, Li HZ, Wang GS (2009) Characteristics of hot compression behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with an equiaxed microstructure. Mater Sci Eng A 505(1–2):136–143CrossRef
83.
go back to reference Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC (2016) On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater 105:449–463CrossRef Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC (2016) On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater 105:449–463CrossRef
84.
go back to reference Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloy - an overview. Mater Sci Eng A 243(1–2):46–65CrossRef Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloy - an overview. Mater Sci Eng A 243(1–2):46–65CrossRef
85.
go back to reference Gao P, Zhan M, Fan X, Lei Z, Cai Y (2017) Hot deformation behavior and microstructure evolution of TA15 titanium alloy with non-uniform microstructure. Mater Sci Eng A 689:243–251CrossRef Gao P, Zhan M, Fan X, Lei Z, Cai Y (2017) Hot deformation behavior and microstructure evolution of TA15 titanium alloy with non-uniform microstructure. Mater Sci Eng A 689:243–251CrossRef
86.
go back to reference Odenberger E-L, Oldenburg M, Thilderkvist P, Stoehr T, Lechler J, Merklein M (2011) Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy. J Mater Process Technol 211(8):1324–1335CrossRef Odenberger E-L, Oldenburg M, Thilderkvist P, Stoehr T, Lechler J, Merklein M (2011) Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy. J Mater Process Technol 211(8):1324–1335CrossRef
Metadata
Title
Hot working of Ti-6Al-4V with a complex initial microstructure
Authors
Michael O. Bodunrin
Lesley H. Chown
Josias W. van der Merwe
Kenneth K. Alaneme
Publication date
16-11-2018
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2019
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-018-1457-9

Other articles of this Issue 5/2019

International Journal of Material Forming 5/2019 Go to the issue

Premium Partners