Skip to main content
Top
Published in: Natural Computing 1/2019

05-01-2018

How to ‘find’ an error minimized genetic code: neutral emergence as an alternative to direct Darwinian selection for evolutionary optimization

Author: Steven E. Massey

Published in: Natural Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Error minimization (EM) of the standard genetic code (SGC) refers to the assignment of amino acids to codons in such a way that the deleterious impact of mutations is reduced. The SGC is nearly optimal for the property of EM, compared to randomly generated codes, and prompts the question of how the property arose. Brute force searching of alternative genetic codes is unlikely to have occurred, given the high number of alternative codes. Therefore, a heuristic search of ‘code space’, the space of alternative codes, would have been necessary. Uncovering the nature of this heuristic search is key to understanding the evolution of the genetic code, and consequently the origin of life. Scenarios that rely on direct selection for the property of EM require codon reassignments to sample code space, but these are problematic mechanistically. Alternatively, it has been shown that EM may have emerged in a neutral fashion as a byproduct of the process of genetic code expansion. In this scenario, similar amino acids are added to similar codons via the gene duplication of tRNAs and aminoacyl-tRNA synthetases. Mimicking this process via simulation indeed produces high levels of EM in the resulting genetic codes. These observations imply that optimization has occurred by an alternative to direct selection, commonly viewed as the only form of evolutionary optimization followed in nature. I propose that the neutral emergence of EM produced by code expansion is a genetic algorithm but unlike direct selection, the local selection criterion (amino acid and codon similarity) is distant from the global fitness function (EM), leading to the emergent optimization of EM. By presenting this counter example I clarify how evolutionary optimization in biological systems is not restricted to direct selection, and emphasize that additional processes may lead to the production of beneficial traits, via ‘non-Darwinian optimization’.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591CrossRef Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591CrossRef
go back to reference Archetti M (2004) Selection on codon usage for error minimization at the protein level. J Mol Evol 59:400–415CrossRef Archetti M (2004) Selection on codon usage for error minimization at the protein level. J Mol Evol 59:400–415CrossRef
go back to reference Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104:17004–17009CrossRef Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104:17004–17009CrossRef
go back to reference Bilgin T, Kurnaz IA, Wagner A (2013) Selection shapes the robustness of ligand-binding amino acids. J Mol Evol 76:343–349CrossRef Bilgin T, Kurnaz IA, Wagner A (2013) Selection shapes the robustness of ligand-binding amino acids. J Mol Evol 76:343–349CrossRef
go back to reference Bornberg-Bauer E, Chan HS (1999) Modelling evolutionary landscapes: mutational stability, topology and superfunnels in sequence space. Proc Natl Acad Sci USA 96:10689–10694CrossRef Bornberg-Bauer E, Chan HS (1999) Modelling evolutionary landscapes: mutational stability, topology and superfunnels in sequence space. Proc Natl Acad Sci USA 96:10689–10694CrossRef
go back to reference Buhrman H, van der Gulik PT, Kelk SM, Koolen WM, Stougle L (2011) Some mathematical refinements concerning error minimization in the genetic code. IEEE/ACM Trans Comput Biol Bioinform 8:1358–1372CrossRef Buhrman H, van der Gulik PT, Kelk SM, Koolen WM, Stougle L (2011) Some mathematical refinements concerning error minimization in the genetic code. IEEE/ACM Trans Comput Biol Bioinform 8:1358–1372CrossRef
go back to reference Buhrman H, van der Gulik PTS, Klau GW, Schaffner C, Speijer D, Stougie L (2013) A realistic model under which the code is optimal. J Mol Evol 77:170–184CrossRef Buhrman H, van der Gulik PTS, Klau GW, Schaffner C, Speijer D, Stougie L (2013) A realistic model under which the code is optimal. J Mol Evol 77:170–184CrossRef
go back to reference Butler T, Goldenfeld N, Mathew D, Luthey-Schulten Z (2009) Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Phys Rev 79:060901 Butler T, Goldenfeld N, Mathew D, Luthey-Schulten Z (2009) Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Phys Rev 79:060901
go back to reference Cavalcanti ARO, De Barros Neto B, Ferreira R (2000) On the classes of aminoacyl-tRNA synthetases and the error minimization in the genetic code. J Theor Biol 204:15–20CrossRef Cavalcanti ARO, De Barros Neto B, Ferreira R (2000) On the classes of aminoacyl-tRNA synthetases and the error minimization in the genetic code. J Theor Biol 204:15–20CrossRef
go back to reference Codoner FM, Daros J, Sole RV, Elena SF (2006) The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog 2:2136CrossRef Codoner FM, Daros J, Sole RV, Elena SF (2006) The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog 2:2136CrossRef
go back to reference Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950CrossRef Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950CrossRef
go back to reference Cusack BP, Arndt PF, Duret L, Crollius HR (2011) Preventing dangerous nonsense: selection for robustness to transcriptional error in human genes. PLoS Genet 7:e1002276CrossRef Cusack BP, Arndt PF, Duret L, Crollius HR (2011) Preventing dangerous nonsense: selection for robustness to transcriptional error in human genes. PLoS Genet 7:e1002276CrossRef
go back to reference de Oliveira LL, de Oliveira PSL, Tinos R (2015) A multiobjective approach to the genetic code adaptability problem. BMC Bioinform 16:52CrossRef de Oliveira LL, de Oliveira PSL, Tinos R (2015) A multiobjective approach to the genetic code adaptability problem. BMC Bioinform 16:52CrossRef
go back to reference De Visser JAGM et al (2003) Perspective: evolution and detetion of genetic robustness. Evolution 57:1959–1972 De Visser JAGM et al (2003) Perspective: evolution and detetion of genetic robustness. Evolution 57:1959–1972
go back to reference Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293CrossRef Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293CrossRef
go back to reference Di Giulio M, Medugno M (2001) The level and landscape of optimization in the origin of the genetic code. J Mol Evol 52:372–382CrossRef Di Giulio M, Medugno M (2001) The level and landscape of optimization in the origin of the genetic code. J Mol Evol 52:372–382CrossRef
go back to reference Di Giulio M, Capobianco MR, Medugno M (1994) On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. J Theor Biol 186:43–51CrossRef Di Giulio M, Capobianco MR, Medugno M (1994) On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. J Theor Biol 186:43–51CrossRef
go back to reference Dueck G (1993) New optimization heuristics: the great deluge algorithm and the record-to-record trave. J Comput Phys 104:86–92CrossRefMATH Dueck G (1993) New optimization heuristics: the great deluge algorithm and the record-to-record trave. J Comput Phys 104:86–92CrossRefMATH
go back to reference Ellis N, Gallant J (1982) An estimate of the global error frequency in translation. Mol Gen Genet 188:169–172CrossRef Ellis N, Gallant J (1982) An estimate of the global error frequency in translation. Mol Gen Genet 188:169–172CrossRef
go back to reference Epstein CJ (1966) Role of the amino-acid “code” and of selection for conformation in the evoluiton of proteins. Nature 210:26–28CrossRef Epstein CJ (1966) Role of the amino-acid “code” and of selection for conformation in the evoluiton of proteins. Nature 210:26–28CrossRef
go back to reference Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767CrossRef Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767CrossRef
go back to reference Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518CrossRef Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518CrossRef
go back to reference Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Origins Life Evol Biosphere 33:457–477CrossRef Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Origins Life Evol Biosphere 33:457–477CrossRef
go back to reference Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:11CrossRef Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:11CrossRef
go back to reference Goldberg AL, Wittes RE (1966) Genetic code: aspects of organization. Science 153:420–424CrossRef Goldberg AL, Wittes RE (1966) Genetic code: aspects of organization. Science 153:420–424CrossRef
go back to reference Goldman N (1993) Further results on error minimization in the genetic code. J Mol Evol 37:662–664 Goldman N (1993) Further results on error minimization in the genetic code. J Mol Evol 37:662–664
go back to reference Goodarzi H, Nejad HA, Torabi N (2004) On the optimality of the genetic code, with consideration of termination codons. BioSystems 77:163–173CrossRef Goodarzi H, Nejad HA, Torabi N (2004) On the optimality of the genetic code, with consideration of termination codons. BioSystems 77:163–173CrossRef
go back to reference Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598CrossRef Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598CrossRef
go back to reference Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864CrossRef Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864CrossRef
go back to reference Higgs PG (2009) A four-column thoery for the origin of the genetic code: tracing the evolutioonary pathways that gave rise to an optimized code. Biol Direct 4:16CrossRef Higgs PG (2009) A four-column thoery for the origin of the genetic code: tracing the evolutioonary pathways that gave rise to an optimized code. Biol Direct 4:16CrossRef
go back to reference Judson OP, Haydon D (1999) The genetic code: what is it good for? An analysis of the effects of selection pressures on genetic codes. J Mol Evol 49:539–550CrossRef Judson OP, Haydon D (1999) The genetic code: what is it good for? An analysis of the effects of selection pressures on genetic codes. J Mol Evol 49:539–550CrossRef
go back to reference Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:242–247CrossRef Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:242–247CrossRef
go back to reference Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111CrossRef Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111CrossRef
go back to reference Kurnaz ML, Bilgin T, Kurnaz IA (2010) Certain non-standard coding tables appear to be more robust to error than the standard genetic code. J Mol Evol 70:13–28CrossRef Kurnaz ML, Bilgin T, Kurnaz IA (2010) Certain non-standard coding tables appear to be more robust to error than the standard genetic code. J Mol Evol 70:13–28CrossRef
go back to reference Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e10010005CrossRef Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e10010005CrossRef
go back to reference Lee S, Cho S (2001) Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm. IEEE Trans Syst Man Cybern Part B 31:919–929CrossRef Lee S, Cho S (2001) Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm. IEEE Trans Syst Man Cybern Part B 31:919–929CrossRef
go back to reference Marquez R, Smit S, Knight R (2005) Do universal codon-usage patterns minimize the effects of mutation and translation error? Genome Biol 6:R91CrossRef Marquez R, Smit S, Knight R (2005) Do universal codon-usage patterns minimize the effects of mutation and translation error? Genome Biol 6:R91CrossRef
go back to reference Massey SE (2006) A sequential ‘2-1-3’ model of genetic code evolution that explains codon constraints. J Mol Evol 62:809–810CrossRef Massey SE (2006) A sequential ‘2-1-3’ model of genetic code evolution that explains codon constraints. J Mol Evol 62:809–810CrossRef
go back to reference Massey SE (2008) A neutral origin of error minimization in the genetic code. J Mol Evol 67:510–516CrossRef Massey SE (2008) A neutral origin of error minimization in the genetic code. J Mol Evol 67:510–516CrossRef
go back to reference Massey SE (2010a) Searching of code space for an error minimized genetic code via Codon Capture leads to failure, or requires at least 20 improving codon reassignments via the Ambiguous Intermediate mechanism. J Mol Evol 70:106–115CrossRef Massey SE (2010a) Searching of code space for an error minimized genetic code via Codon Capture leads to failure, or requires at least 20 improving codon reassignments via the Ambiguous Intermediate mechanism. J Mol Evol 70:106–115CrossRef
go back to reference Massey SE (2010b) Pseudaptations and the emergence of beneficial traits. In: Pontarotti P (ed) Evolutionary biology: concepts, molecular and morphological evolution. Springer, Berlin, pp 81–100CrossRef Massey SE (2010b) Pseudaptations and the emergence of beneficial traits. In: Pontarotti P (ed) Evolutionary biology: concepts, molecular and morphological evolution. Springer, Berlin, pp 81–100CrossRef
go back to reference Massey SE (2015) Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life 5:1301–1332CrossRef Massey SE (2015) Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life 5:1301–1332CrossRef
go back to reference Massey SE (2016) Neutral emergence of error minimized genetic codes superior to the standard genetic code. J Theor Biol 408:237–242CrossRef Massey SE (2016) Neutral emergence of error minimized genetic codes superior to the standard genetic code. J Theor Biol 408:237–242CrossRef
go back to reference Massey SE (2017) The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function. Gene 619:37–43CrossRef Massey SE (2017) The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function. Gene 619:37–43CrossRef
go back to reference Massey SE, Garey JR (2007) A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 64:399–410CrossRef Massey SE, Garey JR (2007) A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 64:399–410CrossRef
go back to reference Mitchell M, Crutchfield JP, Das R (1996) Evolving cellular automata with genetic algorithms: a review of recent work. In: Proceedings of the first international conference on evolutionary computation and its applications. Russian Academy of Sciences Mitchell M, Crutchfield JP, Das R (1996) Evolving cellular automata with genetic algorithms: a review of recent work. In: Proceedings of the first international conference on evolutionary computation and its applications. Russian Academy of Sciences
go back to reference Morgens DW, Cavalcanti ARO (2013) An alternative look at code evolution: using non-canonical codes to evaulate adaptive and historic models for the origin of the genetic code. J Mol Evol 76:71–80CrossRef Morgens DW, Cavalcanti ARO (2013) An alternative look at code evolution: using non-canonical codes to evaulate adaptive and historic models for the origin of the genetic code. J Mol Evol 76:71–80CrossRef
go back to reference Nagel GM, Doolittle RF (1995) Phylogenetic analysis of hte aminoacyl-tRNA synthetases. J Mol Evol 40:487–498CrossRef Nagel GM, Doolittle RF (1995) Phylogenetic analysis of hte aminoacyl-tRNA synthetases. J Mol Evol 40:487–498CrossRef
go back to reference Najafabadi HS, Lehmann J, Omidi M (2007) Error minimization explains the codon usage of highly expressed genes in Escherichia coli. Gene 387:150–155CrossRef Najafabadi HS, Lehmann J, Omidi M (2007) Error minimization explains the codon usage of highly expressed genes in Escherichia coli. Gene 387:150–155CrossRef
go back to reference Novozhilov AS, Wolf YI, Koonin EV (2007) Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct 2:24CrossRef Novozhilov AS, Wolf YI, Koonin EV (2007) Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct 2:24CrossRef
go back to reference Osawa S, Jukes TH (1988) Evolution of the genetic code as affected by anticodon content. Trends Genet 4:191–197CrossRef Osawa S, Jukes TH (1988) Evolution of the genetic code as affected by anticodon content. Trends Genet 4:191–197CrossRef
go back to reference Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278CrossRef Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278CrossRef
go back to reference Pagan RF, Massey SE (2014) A nonadaptive origin of a beneficial trait. in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins. J Mol Evol 78:130–139CrossRef Pagan RF, Massey SE (2014) A nonadaptive origin of a beneficial trait. in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins. J Mol Evol 78:130–139CrossRef
go back to reference Pokarowski P, Kloczkowski A, Nowakowski S, Pokarowska M, Jernigan RL, Kolinksi A (2007) Ideal amino acid exchange forms for approximating substitution matrices. Proteins Struct Funct Bioinform 69:379–393CrossRef Pokarowski P, Kloczkowski A, Nowakowski S, Pokarowska M, Jernigan RL, Kolinksi A (2007) Ideal amino acid exchange forms for approximating substitution matrices. Proteins Struct Funct Bioinform 69:379–393CrossRef
go back to reference Santos J, Monteagudo A (2010) Study of the genetic code adaptability by means of a genetic algorithm. J Theor Biol 264:854–865MathSciNetCrossRef Santos J, Monteagudo A (2010) Study of the genetic code adaptability by means of a genetic algorithm. J Theor Biol 264:854–865MathSciNetCrossRef
go back to reference Schultz DW, Yarus M (1994) Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 235:1377–1380CrossRef Schultz DW, Yarus M (1994) Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 235:1377–1380CrossRef
go back to reference Schultz DW, Yarus M (1996) On malleability in the genetic code. J Mol Evol 42:597–601CrossRef Schultz DW, Yarus M (1996) On malleability in the genetic code. J Mol Evol 42:597–601CrossRef
go back to reference Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. Vogel V, Bryson HJ (eds). Academic Press, New York Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. Vogel V, Bryson HJ (eds). Academic Press, New York
go back to reference Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: selection for translational accuracy. J Mol Evol 24:374–381CrossRef Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: selection for translational accuracy. J Mol Evol 24:374–381CrossRef
go back to reference Stoltzfus A, Yampolsky LY (2007) Amino acid exchangeability and the adaptive code hypothesis. J Mol Evol 65:456–462CrossRef Stoltzfus A, Yampolsky LY (2007) Amino acid exchangeability and the adaptive code hypothesis. J Mol Evol 65:456–462CrossRef
go back to reference van der Gulik PTS, Hoff WDJ (2011) Unassigned codons, nonsense suppression, and anticodon modifications in the evolution of the genetic code. J Mol Evol 73:59CrossRef van der Gulik PTS, Hoff WDJ (2011) Unassigned codons, nonsense suppression, and anticodon modifications in the evolution of the genetic code. J Mol Evol 73:59CrossRef
go back to reference van Nimwegen E, Crutchfield JP, Huynen M (1999) Neutral evolution of mutational robustness. Proc Natl Acad Sci 96:9716–9720CrossRef van Nimwegen E, Crutchfield JP, Huynen M (1999) Neutral evolution of mutational robustness. Proc Natl Acad Sci 96:9716–9720CrossRef
go back to reference Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333CrossRef Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333CrossRef
go back to reference Woese CR (1965) On the evolution of the genetic code. Proc Natal Acad Sci USA 54:1546–1552CrossRef Woese CR (1965) On the evolution of the genetic code. Proc Natal Acad Sci USA 54:1546–1552CrossRef
go back to reference Woese C (1967) The genetic code: the molecular basis for genetic expression. Harper, New York Woese C (1967) The genetic code: the molecular basis for genetic expression. Harper, New York
go back to reference Wong JTF (1980) Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 77:1083–1086CrossRef Wong JTF (1980) Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 77:1083–1086CrossRef
go back to reference Xue H, Tong K, Marck C, Grosjean H, Wong JT (2003) Transfer RNA paralogs: evidence of genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66CrossRef Xue H, Tong K, Marck C, Grosjean H, Wong JT (2003) Transfer RNA paralogs: evidence of genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66CrossRef
go back to reference Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRef Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRef
Metadata
Title
How to ‘find’ an error minimized genetic code: neutral emergence as an alternative to direct Darwinian selection for evolutionary optimization
Author
Steven E. Massey
Publication date
05-01-2018
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 1/2019
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-017-9669-3

Other articles of this Issue 1/2019

Natural Computing 1/2019 Go to the issue

EditorialNotes

Preface

Premium Partner