Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2022

31-01-2022 | ORIGINAL ARTICLE

Hybrid big data analytics and Industry 4.0 approach to projecting cycle time ranges

Authors: Toly Chen, Yu-Cheng Wang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a hybrid big data analytics and Industry 4.0 (BD-I4) approach to enhancing the effectiveness of cycle time range projections for factory jobs. As a joint application of big data analytics and Industry 4.0, the BD-I4 approach is distinct from existing methods in this field. In this approach, each expert first constructs a fuzzy deep neural network to project the cycle time range of a job, an application of big data analytics (i.e., deep learning). Subsequently, the fuzzy weighted intersection operator is applied to aggregate the projected cycle times such that unequal authority levels can be considered, an application of Industry 4.0 (i.e., artificial intelligence). Applying the BD-I4 approach to a real case that the proposed methodology improved the projection precision by up to 72%, suggesting that instead of relying on a single expert, collaboration among multiple experts may be more effective and efficient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dauendorffer A, Shiozawa T, Yoshida K, Nagamine N, Kamei Y, Kawakami S, Shimura S, Nafus K, Sonoda A, Foubert P (2020) Clean track solutions for defectivity and CD control towards 5 nm and smaller nodes. Extreme Ultraviolet (EUV) Lithography XI 11323:113232A Dauendorffer A, Shiozawa T, Yoshida K, Nagamine N, Kamei Y, Kawakami S, Shimura S, Nafus K, Sonoda A, Foubert P (2020) Clean track solutions for defectivity and CD control towards 5 nm and smaller nodes. Extreme Ultraviolet (EUV) Lithography XI 11323:113232A
2.
go back to reference Chen T, Wang YC, Tsai HR (2009) Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. Int J Adv Manuf Technol 42(11):1206–1216CrossRef Chen T, Wang YC, Tsai HR (2009) Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. Int J Adv Manuf Technol 42(11):1206–1216CrossRef
3.
go back to reference Baykasoğlu A, Göçken M, Unutmaz ZD (2008) New approaches to due date assignment in job shops. Eur J Oper Res 187(1):31–45CrossRef Baykasoğlu A, Göçken M, Unutmaz ZD (2008) New approaches to due date assignment in job shops. Eur J Oper Res 187(1):31–45CrossRef
4.
go back to reference Shabtay D (2010) Scheduling and due date assignment to minimize earliness, tardiness, holding, due date assignment and batch delivery costs. Int J Prod Econ 123(1):235–242CrossRef Shabtay D (2010) Scheduling and due date assignment to minimize earliness, tardiness, holding, due date assignment and batch delivery costs. Int J Prod Econ 123(1):235–242CrossRef
5.
go back to reference Yin Y, Cheng TCE, Xu D, Wu CC (2012) Common due date assignment and scheduling with a rate-modifying activity to minimize the due date, earliness, tardiness, holding, and batch delivery cost. Comput Ind Eng 63(1):223–234CrossRef Yin Y, Cheng TCE, Xu D, Wu CC (2012) Common due date assignment and scheduling with a rate-modifying activity to minimize the due date, earliness, tardiness, holding, and batch delivery cost. Comput Ind Eng 63(1):223–234CrossRef
6.
go back to reference Azadeh A, Ziaeifar A, Pichka K, Asadzadeh SM (2013) An intelligent algorithm for optimum forecasting of manufacturing lead times in fuzzy and crisp environments. Int J Logist Manag 16(2):186–210 Azadeh A, Ziaeifar A, Pichka K, Asadzadeh SM (2013) An intelligent algorithm for optimum forecasting of manufacturing lead times in fuzzy and crisp environments. Int J Logist Manag 16(2):186–210
7.
go back to reference Chiu C, Chang PC, Chiu NH (2003) A case-based expert support system for due-date assignment in a wafer fabrication factory. J Intell Manuf 14(3):287–296CrossRef Chiu C, Chang PC, Chiu NH (2003) A case-based expert support system for due-date assignment in a wafer fabrication factory. J Intell Manuf 14(3):287–296CrossRef
8.
go back to reference Öztürk A, Kayalıgil S, Özdemirel NE (2006) Manufacturing lead time estimation using data mining. Eur J Oper Res 173(2):683–700MathSciNetCrossRef Öztürk A, Kayalıgil S, Özdemirel NE (2006) Manufacturing lead time estimation using data mining. Eur J Oper Res 173(2):683–700MathSciNetCrossRef
9.
go back to reference Wang J, Zhang J (2016) Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. Int J Prod Res 54(23):7231–7244CrossRef Wang J, Zhang J (2016) Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. Int J Prod Res 54(23):7231–7244CrossRef
10.
go back to reference Tan X, Xing L, Cai Z, Wang G (2020) Analysis of production cycle-time distribution with a big-data approach. J Intell Manuf 31:1889–1897CrossRef Tan X, Xing L, Cai Z, Wang G (2020) Analysis of production cycle-time distribution with a big-data approach. J Intell Manuf 31:1889–1897CrossRef
11.
go back to reference Vinod V, Sridharan R (2011) Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system. Int J Prod Econ 129(1):127–146CrossRef Vinod V, Sridharan R (2011) Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system. Int J Prod Econ 129(1):127–146CrossRef
12.
go back to reference Chang PC, Liao TW (2006) Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Appl Soft Comput 6(2):198–206CrossRef Chang PC, Liao TW (2006) Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Appl Soft Comput 6(2):198–206CrossRef
13.
go back to reference Chen T (2012) An efficient and effective fuzzy collaborative intelligence approach for cycle time estimation in wafer fabrication. Int J Intell Syst 30(6):620–650CrossRef Chen T (2012) An efficient and effective fuzzy collaborative intelligence approach for cycle time estimation in wafer fabrication. Int J Intell Syst 30(6):620–650CrossRef
14.
go back to reference Asadzadeh SM, Azadeh A, Ziaeifar A (2011) A neuro-fuzzy-regression algorithm for improved prediction of manufacturing lead time with machine breakdowns. Concurr Eng 19(4):269–281CrossRef Asadzadeh SM, Azadeh A, Ziaeifar A (2011) A neuro-fuzzy-regression algorithm for improved prediction of manufacturing lead time with machine breakdowns. Concurr Eng 19(4):269–281CrossRef
15.
go back to reference Tirkel I (2013) The effectiveness of variability reduction in decreasing wafer fabrication cycle time. Winter Simul Conf 3796–3805 Tirkel I (2013) The effectiveness of variability reduction in decreasing wafer fabrication cycle time. Winter Simul Conf 3796–3805
16.
go back to reference Wang J, Zhang J, Wang X (2017) Bilateral LSTM: a two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems. IEEE Trans Industr Inf 14(2):748–758CrossRef Wang J, Zhang J, Wang X (2017) Bilateral LSTM: a two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems. IEEE Trans Industr Inf 14(2):748–758CrossRef
17.
go back to reference Chien CF, Hsiao CW, Meng C, Hong KT, Wang ST (2005) Cycle time prediction and control based on production line status and manufacturing data mining. IEEE Int Symp Semicon Manu 2005:327–330 Chien CF, Hsiao CW, Meng C, Hong KT, Wang ST (2005) Cycle time prediction and control based on production line status and manufacturing data mining. IEEE Int Symp Semicon Manu 2005:327–330
18.
go back to reference Chen T, Wu HC (2017) A new cloud computing method for establishing asymmetric cycle time intervals in a wafer fabrication factory. J Intell Manuf 28(5):1095–1107CrossRef Chen T, Wu HC (2017) A new cloud computing method for establishing asymmetric cycle time intervals in a wafer fabrication factory. J Intell Manuf 28(5):1095–1107CrossRef
19.
go back to reference Pedrycz W (2008) Collaborative architectures of fuzzy modeling. IEEE World Cong Comput Intell 117–139 Pedrycz W (2008) Collaborative architectures of fuzzy modeling. IEEE World Cong Comput Intell 117–139
20.
go back to reference Chen TCT, Honda K (2020) Fuzzy collaborative forecasting and clustering: methodology, system architecture, and applications. Springer Int Publ Chen TCT, Honda K (2020) Fuzzy collaborative forecasting and clustering: methodology, system architecture, and applications. Springer Int Publ
21.
go back to reference Chen T, Liao TW, Yu F (2015) Fuzzy collaborative intelligence and systems. Int J Intell Syst 30:617–619CrossRef Chen T, Liao TW, Yu F (2015) Fuzzy collaborative intelligence and systems. Int J Intell Syst 30:617–619CrossRef
22.
go back to reference Zapata J, Vilar R, Ruiz R (2010) An adaptive-network-based fuzzy inference system for classification of welding defects. NDT and E Int 43(3):191–199CrossRef Zapata J, Vilar R, Ruiz R (2010) An adaptive-network-based fuzzy inference system for classification of welding defects. NDT and E Int 43(3):191–199CrossRef
23.
go back to reference Chen T, Lin YC (2008) A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int J Uncertain Fuzz Knowl Based Syst 16(01):35–58MathSciNetCrossRef Chen T, Lin YC (2008) A fuzzy-neural system incorporating unequally important expert opinions for semiconductor yield forecasting. Int J Uncertain Fuzz Knowl Based Syst 16(01):35–58MathSciNetCrossRef
24.
go back to reference Chen TCT, Wang YC, Lin CW (2020) A fuzzy collaborative forecasting approach considering experts’ unequal levels of authority. Appl Soft Comput 94:106455 Chen TCT, Wang YC, Lin CW (2020) A fuzzy collaborative forecasting approach considering experts’ unequal levels of authority. Appl Soft Comput 94:106455
25.
go back to reference Chen T, Wang YC, Wu HC (2021) Analyzing the impact of vaccine availability on alternative supplier selection amid the COVID-19 pandemic: a cFGM-FTOPSIS-FWI approach. Healthcare 9(1):71CrossRef Chen T, Wang YC, Wu HC (2021) Analyzing the impact of vaccine availability on alternative supplier selection amid the COVID-19 pandemic: a cFGM-FTOPSIS-FWI approach. Healthcare 9(1):71CrossRef
26.
go back to reference Russom P (2011) Big data analytics. TDWI Best Pract Rep 19(4):1–34 Russom P (2011) Big data analytics. TDWI Best Pract Rep 19(4):1–34
27.
go back to reference Tsai CW, Lai CF, Chao HC, Vasilakos AV (2015) Big data analytics: a survey. J Big data 2(1):1–32CrossRef Tsai CW, Lai CF, Chao HC, Vasilakos AV (2015) Big data analytics: a survey. J Big data 2(1):1–32CrossRef
28.
go back to reference Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573CrossRef Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573CrossRef
29.
go back to reference Zappone A, Di Renzo M, Debbah M, Lam TT, Qian X (2019) Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization. IEEE Veh Technol Mag 14(3):60–69CrossRef Zappone A, Di Renzo M, Debbah M, Lam TT, Qian X (2019) Model-aided wireless artificial intelligence: embedding expert knowledge in deep neural networks for wireless system optimization. IEEE Veh Technol Mag 14(3):60–69CrossRef
30.
go back to reference Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242 Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242
31.
go back to reference Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394CrossRef Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394CrossRef
32.
go back to reference Chen T, Jeang A, Wang YC (2008) A hybrid neural network and selective allowance approach for internal due date assignment in a wafer fabrication plant. Int J Adv Manuf Technol 36(5–6):570–581CrossRef Chen T, Jeang A, Wang YC (2008) A hybrid neural network and selective allowance approach for internal due date assignment in a wafer fabrication plant. Int J Adv Manuf Technol 36(5–6):570–581CrossRef
33.
go back to reference Tüysüz F, Kahraman C (2010) Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst Appl 37(5):3910–3920CrossRef Tüysüz F, Kahraman C (2010) Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst Appl 37(5):3910–3920CrossRef
34.
go back to reference Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2016) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012CrossRef Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2016) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst 25(4):1006–1012CrossRef
35.
go back to reference Rajurkar S, Verma NK (2017) Developing deep fuzzy network with Takagi Sugeno fuzzy inference system. 2017 IEEE Int Conf Fuzzy Syst 1–6 Rajurkar S, Verma NK (2017) Developing deep fuzzy network with Takagi Sugeno fuzzy inference system. 2017 IEEE Int Conf Fuzzy Syst 1–6
36.
go back to reference Mudiyanselage TKB, Xiao X, Zhang Y, Pan Y (2019) Deep fuzzy neural networks for biomarker selection for accurate cancer detection. IEEE Trans Fuzzy Syst 28(12):3219–3228CrossRef Mudiyanselage TKB, Xiao X, Zhang Y, Pan Y (2019) Deep fuzzy neural networks for biomarker selection for accurate cancer detection. IEEE Trans Fuzzy Syst 28(12):3219–3228CrossRef
37.
go back to reference Liang X, Wang G, Min MR, Qi Y, Han Z (2019) A deep spatio-temporal fuzzy neural network for passenger demand prediction. Proc 2019 SIAM Int Conf Data Min 100–108 Liang X, Wang G, Min MR, Qi Y, Han Z (2019) A deep spatio-temporal fuzzy neural network for passenger demand prediction. Proc 2019 SIAM Int Conf Data Min 100–108
38.
go back to reference Qasem SN, Mohammadzadeh A (2021) A deep learned type-2 fuzzy neural network: singular value decomposition approach. Appl Soft Comput 105:107244 Qasem SN, Mohammadzadeh A (2021) A deep learned type-2 fuzzy neural network: singular value decomposition approach. Appl Soft Comput 105:107244
39.
go back to reference Nocedal J, Wright S (2006) Numerical optimization. Springer Sci Bus Med Nocedal J, Wright S (2006) Numerical optimization. Springer Sci Bus Med
40.
go back to reference Kriett PO, Eirich S, Grunow M (2017) Cycle time-oriented mid-term production planning for semiconductor wafer fabrication. Int J Prod Res 55(16):4662–4679CrossRef Kriett PO, Eirich S, Grunow M (2017) Cycle time-oriented mid-term production planning for semiconductor wafer fabrication. Int J Prod Res 55(16):4662–4679CrossRef
41.
go back to reference Valles A, Sanchez J, Noriega S, Nuñez BG (2009) Implementation of Six Sigma in a manufacturing process: a case study. Int J Ind Eng 16(3):171–181 Valles A, Sanchez J, Noriega S, Nuñez BG (2009) Implementation of Six Sigma in a manufacturing process: a case study. Int J Ind Eng 16(3):171–181
42.
go back to reference Wang YC, Tsai HR, Chen T (2021) A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9(12):1430CrossRef Wang YC, Tsai HR, Chen T (2021) A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication. Mathematics 9(12):1430CrossRef
43.
go back to reference Lin YC, Chen T (2020) A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: smart backpack design as an example. Proc Inst Mech Eng Part B J Eng Manuf 234(6–7):1044–1056CrossRef Lin YC, Chen T (2020) A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: smart backpack design as an example. Proc Inst Mech Eng Part B J Eng Manuf 234(6–7):1044–1056CrossRef
44.
go back to reference Chen T (2017) New fuzzy method for improving the precision of productivity predictions for a factory. Neural Comput Appl 28(11):3507–3520CrossRef Chen T (2017) New fuzzy method for improving the precision of productivity predictions for a factory. Neural Comput Appl 28(11):3507–3520CrossRef
Metadata
Title
Hybrid big data analytics and Industry 4.0 approach to projecting cycle time ranges
Authors
Toly Chen
Yu-Cheng Wang
Publication date
31-01-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2022
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08733-z

Other articles of this Issue 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Go to the issue

Premium Partners