Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2016

01-09-2016 | Original Article

Hydrothermal carbonization of wheat straw—prediction of product mass yields and degree of carbonization by severity parameter

Authors: Kay Suwelack, Dominik Wüst, Meret Zeller, Andrea Kruse, Johannes Krümpel

Published in: Biomass Conversion and Biorefinery | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The product yields of hydrothermal carbonization of wheat straw as well as the degree of carbonization are quantified as functions of process parameters by using a severity approach. The process severity was calculated from temperature, retention time, and catalyst concentration. Data gained from batch experiments (190–245 °C, 150–570 min) were used to fit the model parameters. By these models, basing on few selected reaction conditions, a wide range of process conditions can be covered and the yields for the solid, solved organic, and gaseous product phase can be predicted. Moreover, the paper delivers model equations for the prediction of the H/C and O/C ratios for the solid product phase. Such model equations can be used for process optimization and for valid LCA calculations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bergius F (1932) Chemical reactions under high pressure. Nobel Lecture Bergius F (1932) Chemical reactions under high pressure. Nobel Lecture
2.
go back to reference Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–27CrossRef Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–27CrossRef
3.
go back to reference Guiotoku M, Rambo CR, Hotza D (2014) Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J Therm Anal Calorim 117(1):269–75CrossRef Guiotoku M, Rambo CR, Hotza D (2014) Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J Therm Anal Calorim 117(1):269–75CrossRef
4.
go back to reference Reza MT, Wirth B, Lueder U, Werner M (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–61CrossRef Reza MT, Wirth B, Lueder U, Werner M (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–61CrossRef
5.
go back to reference Yan W, Hoekman SK, Broch A, Coronella CJ (2014) Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ Prog Sustain Energy 33(3):676–80CrossRef Yan W, Hoekman SK, Broch A, Coronella CJ (2014) Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ Prog Sustain Energy 33(3):676–80CrossRef
6.
go back to reference Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ et al (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–9CrossRef Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ et al (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–9CrossRef
7.
go back to reference Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99:271–3CrossRef Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99:271–3CrossRef
8.
go back to reference Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94CrossRef Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94CrossRef
9.
go back to reference Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B (2013) Chemical modification of biomass residues during hydrothermal carbonization—what makes the difference, temperature or feedstock? Org Geochem 54:91–100CrossRef Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B (2013) Chemical modification of biomass residues during hydrothermal carbonization—what makes the difference, temperature or feedstock? Org Geochem 54:91–100CrossRef
10.
go back to reference Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103(SI):78–83CrossRef Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103(SI):78–83CrossRef
11.
go back to reference Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuel 25(4):1802–10CrossRef Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuel 25(4):1802–10CrossRef
12.
go back to reference Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–60CrossRef Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–60CrossRef
14.
go back to reference Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47(5):1109–22CrossRef Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47(5):1109–22CrossRef
15.
go back to reference Janga KK, Øyaas K, Hertzberg T, Moe ST (2012) Application of a pseudo-kinetic generalized severity model to the concentrated sulfuric acid hydrolysis of pinewood and aspenwood. BioResources 7(3). Janga KK, Øyaas K, Hertzberg T, Moe ST (2012) Application of a pseudo-kinetic generalized severity model to the concentrated sulfuric acid hydrolysis of pinewood and aspenwood. BioResources 7(3).
16.
go back to reference Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung Chemie Ing Tech 84(4):509–12CrossRef Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung Chemie Ing Tech 84(4):509–12CrossRef
17.
go back to reference Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels 27(2):908–18CrossRef Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels 27(2):908–18CrossRef
18.
go back to reference Forchheim D, Hornung U, Kruse A, Sutter T (2014) Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valor 5(6):985–94CrossRef Forchheim D, Hornung U, Kruse A, Sutter T (2014) Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valor 5(6):985–94CrossRef
19.
go back to reference Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Bioref 4(2):160–77CrossRef Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Bioref 4(2):160–77CrossRef
20.
go back to reference Suwelack KU, Wüst D, Fleischmann P, Kruse A (2015) Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate. Biomass Conv Bioref (N.N.) Suwelack KU, Wüst D, Fleischmann P, Kruse A (2015) Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate. Biomass Conv Bioref (N.N.)
21.
go back to reference Mott RA, Spooner CE (1940) The calorific value of carbon in coal: the dulong relationship. Fuel 19(10, 11):226–31, 242–251 Mott RA, Spooner CE (1940) The calorific value of carbon in coal: the dulong relationship. Fuel 19(10, 11):226–31, 242–251
22.
go back to reference Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51CrossRef Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51CrossRef
23.
go back to reference Montane D, Salvade J, Farriol X, Jollez P, Chornet E (1994) Phenomenological kinetics of wood delignification: application of a time-dependent rate constant and a generalized severity parameter to pulping and correlation of pulp properties. Wood Sci Technol 28(6) Montane D, Salvade J, Farriol X, Jollez P, Chornet E (1994) Phenomenological kinetics of wood delignification: application of a time-dependent rate constant and a generalized severity parameter to pulping and correlation of pulp properties. Wood Sci Technol 28(6)
24.
go back to reference Titirici M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787CrossRef Titirici M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787CrossRef
25.
go back to reference Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1(9):1092–101CrossRef Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1(9):1092–101CrossRef
26.
go back to reference Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–46CrossRef Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–46CrossRef
27.
go back to reference del Río, José C, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60(23):5922–35 del Río, José C, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60(23):5922–35
28.
go back to reference Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100(12):3140–2CrossRef Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100(12):3140–2CrossRef
29.
go back to reference Kruse A, Grandl R (2015) Hydrothermale Karbonisierung: 3. Kinetisches Modell Chemie Ing Tech 87(4):449–56CrossRef Kruse A, Grandl R (2015) Hydrothermale Karbonisierung: 3. Kinetisches Modell Chemie Ing Tech 87(4):449–56CrossRef
Metadata
Title
Hydrothermal carbonization of wheat straw—prediction of product mass yields and degree of carbonization by severity parameter
Authors
Kay Suwelack
Dominik Wüst
Meret Zeller
Andrea Kruse
Johannes Krümpel
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2016
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0192-4

Other articles of this Issue 3/2016

Biomass Conversion and Biorefinery 3/2016 Go to the issue