Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2016

01-09-2016 | Original Article

Process design and economics of an aluminium chloride catalysed organosolv process

Authors: Martin Schwiderski, Andrea Kruse

Published in: Biomass Conversion and Biorefinery | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, an organosolv process using beech wood as the feedstock, a mixture of water and methanol (50 vol%) as the solvent and aluminium chloride as the catalyst is designed. Different to other organosolv processes, the formation of the high value-added product furfural occurs already in the cooking stage with a quite high yield (40 mol% based on a lab scale literature process). Different to furfural producing processes, the cellulose remains in the solid phase in high quantity (93 wt% of the initial based on a lab scale literature process). The plant is designed in the way that 99.7 wt% of methanol is recovered. Another specification is the isolation of 95 wt% furfural with a purity of more than 99.5 wt%. After consecutive conversion of cellulose, the minimum sugar selling price of glucose as a dilute solution is calculated as 329 $/t depending strongly on the furfural yield as well as the application of lignin and the corresponding selling price.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference IEA. IEA bioenergy Task 42 on biorefineries (2007) Co-production of fuels, chemicals, power and materials from biomass. In: Minutes of the third Task meeting, Copenhagen, Denmark, 25–26 IEA. IEA bioenergy Task 42 on biorefineries (2007) Co-production of fuels, chemicals, power and materials from biomass. In: Minutes of the third Task meeting, Copenhagen, Denmark, 25–26
2.
go back to reference Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef
3.
go back to reference Brownlee HJ, Miner CS (1923) Process of manufacturing furfural. UK Patent 203691-A Brownlee HJ, Miner CS (1923) Process of manufacturing furfural. UK Patent 203691-A
4.
go back to reference Nimlos MR, Qian X, Davis M, Himmel ME, Johnson DK (2006) Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A 110:11824–11838CrossRef Nimlos MR, Qian X, Davis M, Himmel ME, Johnson DK (2006) Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A 110:11824–11838CrossRef
5.
go back to reference Zeitsch KJ (2000) The chemistry and technology of furfural and its many byproducts, 1st edn. Elsevier, Amsterdam, pp 43–61 Zeitsch KJ (2000) The chemistry and technology of furfural and its many byproducts, 1st edn. Elsevier, Amsterdam, pp 43–61
6.
go back to reference Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRef Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRef
7.
go back to reference Alonso-Fagundez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VO(x)/Al(2)O(3) catalysts. ChemSusChem 5:1984–1990CrossRef Alonso-Fagundez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VO(x)/Al(2)O(3) catalysts. ChemSusChem 5:1984–1990CrossRef
8.
go back to reference Lecomte J, Finiels A, Geneste P, Moreau C (1998) Selective hydroxymethylation of furfuryl alcohol with aqueous formaldehyde in the presence of dealuminated mordernites. Appl Catal A 168:235–241CrossRef Lecomte J, Finiels A, Geneste P, Moreau C (1998) Selective hydroxymethylation of furfuryl alcohol with aqueous formaldehyde in the presence of dealuminated mordernites. Appl Catal A 168:235–241CrossRef
9.
go back to reference Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Status quo and future directions, 1st edn. Wiley, Weinheim, pp 139–164 Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2006) The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Status quo and future directions, 1st edn. Wiley, Weinheim, pp 139–164
10.
go back to reference Van-Putten RJ, Van der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRef Van-Putten RJ, Van der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRef
11.
go back to reference Frainier LJ, Fineberg H (1981) Preparation of furfuryl alcohol from furfural. US Patent 4302397 Frainier LJ, Fineberg H (1981) Preparation of furfuryl alcohol from furfural. US Patent 4302397
12.
go back to reference Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84CrossRef Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Russ Chem Rev 68:73–84CrossRef
13.
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
14.
go back to reference Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68 Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68
15.
go back to reference Tao L, Tan ECD, Aden A, Elander RT (2014) Techno-economic analysis and life-cycle assessment of lignocellulosic biomass to sugars using various pretreatment technologies. In: Sun J, Ding SY, Peterson JD (eds) Biological conversion of biomass for fuels and chemicals: exploration from natural utilization systems, 1st edn. RSC Publishing, Cambridge, pp 358–380 Tao L, Tan ECD, Aden A, Elander RT (2014) Techno-economic analysis and life-cycle assessment of lignocellulosic biomass to sugars using various pretreatment technologies. In: Sun J, Ding SY, Peterson JD (eds) Biological conversion of biomass for fuels and chemicals: exploration from natural utilization systems, 1st edn. RSC Publishing, Cambridge, pp 358–380
16.
go back to reference Mussatto SI, Dragone G, Guimaraes PMR, Paulo J, Silva A, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830CrossRef Mussatto SI, Dragone G, Guimaraes PMR, Paulo J, Silva A, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830CrossRef
17.
go back to reference Van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Bioref 2:41–57CrossRef Van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Bioref 2:41–57CrossRef
18.
go back to reference Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123:871–882CrossRef Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123:871–882CrossRef
19.
go back to reference Laure S, Leschinsky M, Fröhling M, Schultmann F, Unkelbach G (2014) Assessment of an organosolv lignocellulose biorefinary concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48:793–798 Laure S, Leschinsky M, Fröhling M, Schultmann F, Unkelbach G (2014) Assessment of an organosolv lignocellulose biorefinary concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48:793–798
20.
go back to reference Gravitis J, Vedernikov N, Zandersons J, Kokerevics A (2001) Furfural and levoglucosan production from deciduous wood and agricultural wastes. In: Bozell JJ (ed) Chemicals and materials from renewable resources. American Chemical Society, Washington DC, pp 110–122CrossRef Gravitis J, Vedernikov N, Zandersons J, Kokerevics A (2001) Furfural and levoglucosan production from deciduous wood and agricultural wastes. In: Bozell JJ (ed) Chemicals and materials from renewable resources. American Chemical Society, Washington DC, pp 110–122CrossRef
21.
go back to reference Vedernikov N, Kampars V, Puke M, Kruma I (2010) Changes in the birch wood lignocellulose composition in the pretreatment process. Sci J Riga TechUniv 22:68–72 Vedernikov N, Kampars V, Puke M, Kruma I (2010) Changes in the birch wood lignocellulose composition in the pretreatment process. Sci J Riga TechUniv 22:68–72
22.
go back to reference Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Comparison of the influence of a Lewis acid AlCl3 and a Brønsted acid HCl on the organosolv pulping of beech wood. Green Chem 16:1569–1578CrossRef Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Comparison of the influence of a Lewis acid AlCl3 and a Brønsted acid HCl on the organosolv pulping of beech wood. Green Chem 16:1569–1578CrossRef
23.
go back to reference Schwiderski M, Kruse A (2015) Catalytic effect of aluminium chloride on the example of the conversion of sugar model compounds. J Mol Catal A 402:64–70CrossRef Schwiderski M, Kruse A (2015) Catalytic effect of aluminium chloride on the example of the conversion of sugar model compounds. J Mol Catal A 402:64–70CrossRef
24.
go back to reference Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from the ethanol-water fractionation of sugar cane bagasse. Cellul Chem Technol 44:311–318 Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from the ethanol-water fractionation of sugar cane bagasse. Cellul Chem Technol 44:311–318
25.
go back to reference Schwiderski M, Kruse A (2015) Aluminiumchlorid-katalysierter organosolv-aufschluss von buchenholz. Chem Ing Tech 87:922–930CrossRef Schwiderski M, Kruse A (2015) Aluminiumchlorid-katalysierter organosolv-aufschluss von buchenholz. Chem Ing Tech 87:922–930CrossRef
26.
go back to reference AspenTech (2013) Aspen PlusTM V8.2. Software. Aspen Technology, Inc, Massachusetts AspenTech (2013) Aspen PlusTM V8.2. Software. Aspen Technology, Inc, Massachusetts
27.
go back to reference Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Bioref 3:199–212CrossRef Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Bioref 3:199–212CrossRef
28.
go back to reference Kautto J, Realff MJ, Ragauskas AJ, Kässi T (2014) Economic analysis of an organosolv process for bioethanol production. Bioresources 9:6041–6072CrossRef Kautto J, Realff MJ, Ragauskas AJ, Kässi T (2014) Economic analysis of an organosolv process for bioethanol production. Bioresources 9:6041–6072CrossRef
29.
go back to reference Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRef Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRef
30.
go back to reference Short W, Packey DJ, Holt T (1995) A manual for the economic evaluation and energy efficiency and renewable energy technologies. National Renewable Energy Laboratory technical report NREL/TP-462-5173 Colorado Short W, Packey DJ, Holt T (1995) A manual for the economic evaluation and energy efficiency and renewable energy technologies. National Renewable Energy Laboratory technical report NREL/TP-462-5173 Colorado
31.
go back to reference Fogelholm C-J, Suutela J (1999) Heat and power co-generation. In: Gullichsen J, Fogelholm C-J (eds) Papermaking science and technology, chemical pulping, book 6B, 1st edn. Fapet Oy, Finland, pp 303–337 Fogelholm C-J, Suutela J (1999) Heat and power co-generation. In: Gullichsen J, Fogelholm C-J (eds) Papermaking science and technology, chemical pulping, book 6B, 1st edn. Fapet Oy, Finland, pp 303–337
32.
go back to reference Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manage 42:183–188CrossRef Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manage 42:183–188CrossRef
33.
go back to reference Pittam DA, Pilcher G (1972) Measurements of heats of combustion by flame calorimetry. Part 8.—methane, ethane, propane, n-butane and 2-methylpropane. J Chem Soc Faraday Trans 1(68):2224–2229CrossRef Pittam DA, Pilcher G (1972) Measurements of heats of combustion by flame calorimetry. Part 8.—methane, ethane, propane, n-butane and 2-methylpropane. J Chem Soc Faraday Trans 1(68):2224–2229CrossRef
34.
go back to reference Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRef Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRef
35.
go back to reference Berguson B, Eaton J, Stanton B (2010) “Development of hybrid poplar for commercial production in the United States: the Pacific Northwest and Minnesota experience”, proceedings of the sustainable feedstocks for advanced fuels, sustainable alternative fuel feedstock opportunities, challenges and roadmaps for SIX U.S. regions, chapter 17, soil and water conservation society Berguson B, Eaton J, Stanton B (2010) “Development of hybrid poplar for commercial production in the United States: the Pacific Northwest and Minnesota experience”, proceedings of the sustainable feedstocks for advanced fuels, sustainable alternative fuel feedstock opportunities, challenges and roadmaps for SIX U.S. regions, chapter 17, soil and water conservation society
38.
go back to reference Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory technical report NREL/TP-5100-47764. Colorado Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory technical report NREL/TP-5100-47764. Colorado
40.
go back to reference Tin Win D (2005) Furfural - gold from garbage. AU J T 8:185–190 Tin Win D (2005) Furfural - gold from garbage. AU J T 8:185–190
41.
go back to reference Watson LJ, Connors CG (2008) Furfural—a value adding opportunity for the Australian sugar industry. Proc Aust Soc Sugar Cane Technol 30:429–436 Watson LJ, Connors CG (2008) Furfural—a value adding opportunity for the Australian sugar industry. Proc Aust Soc Sugar Cane Technol 30:429–436
43.
go back to reference Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861CrossRef Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861CrossRef
44.
go back to reference Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247CrossRef Rasrendra CB, Makertihartha IGBN, Adisasmito S, Heeres HJ (2010) Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top Catal 53:1241–1247CrossRef
45.
go back to reference Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Kinetics of the AlCl3 catalyzed xylan hydrolysis during methanosolv pulping of beech wood. RSC Adv 4:45118–45127CrossRef Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Kinetics of the AlCl3 catalyzed xylan hydrolysis during methanosolv pulping of beech wood. RSC Adv 4:45118–45127CrossRef
46.
go back to reference Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory technical report NREL/TP-510-41168. Colorado Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory technical report NREL/TP-510-41168. Colorado
47.
go back to reference Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991CrossRef Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991CrossRef
48.
go back to reference Huang HJ, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA (2009) Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenergy 33:234–246CrossRef Huang HJ, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA (2009) Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenergy 33:234–246CrossRef
49.
go back to reference Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6:3515–3525 Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. Bioresources 6:3515–3525
50.
go back to reference Chen MCW (2014) Commercial viability analysis of lignin based carbon fibre. Master thesis, Simon Fraser University Chen MCW (2014) Commercial viability analysis of lignin based carbon fibre. Master thesis, Simon Fraser University
51.
go back to reference Mao L, Zhang L, Gao N, Li A (2013) Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem 15:727–737CrossRef Mao L, Zhang L, Gao N, Li A (2013) Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem 15:727–737CrossRef
52.
go back to reference Zhang L, Yu H (2013) Conversion of xylan and xylose into furfural in biorenewable deep eutectic solvent with trivalent metal chloride added. Bioresources 8:6014–6025 Zhang L, Yu H (2013) Conversion of xylan and xylose into furfural in biorenewable deep eutectic solvent with trivalent metal chloride added. Bioresources 8:6014–6025
53.
go back to reference Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRef
54.
go back to reference Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334CrossRef Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of miscanthus x giganteus using the ethanol organosolv process for ethanol production. Ind Eng Chem Res 48:8328–8334CrossRef
55.
go back to reference McMillan JD (1993) Xylose fermentation to ethanol: a review. National Renewable Energy Laboratory technical report NREL/TP-421-4944. Colorado McMillan JD (1993) Xylose fermentation to ethanol: a review. National Renewable Energy Laboratory technical report NREL/TP-421-4944. Colorado
56.
go back to reference Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53CrossRef Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53CrossRef
Metadata
Title
Process design and economics of an aluminium chloride catalysed organosolv process
Authors
Martin Schwiderski
Andrea Kruse
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2016
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0189-z

Other articles of this Issue 3/2016

Biomass Conversion and Biorefinery 3/2016 Go to the issue