Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2017

08-09-2017 | Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications

Authors: B. Saravanakumar, T. Priyadharshini, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrothermal method was adapted to synthesis NiCo2O4 nanoparticles by varying nickel and cobalt precursor concentration as 1:1, 1:2, and 1:3 ratios. X-ray diffraction (XRD) results revealed the spinel NiCo2O4 structure belongs to \({\rm{Fd}}\overline {\rm{3}} {\rm{m}}\) space group system with face-centered cubic crystal structure. Raman characteristic peaks observed at 495 and 654 cm−1 explored Eg and A2g modes of spinel NiCo2O4 product. Photoluminescence (PL) results revealed the hole recombination of Ni2+/Co2+ ions from 3d-Eg and 3d-Tg electronic state of spinel NiCo2O4 material. The characteristic Fourier transform infrared spectroscopy (FTIR) metal–oxygen bands appeared at 658 and 558 cm−1 revealed the spinel-type crystal structure. SEM image revealed the NiCo2O4 spherical nanoparticles formation with an average particle size of around 500 nm. The cyclic voltammetry studies revealed the estimated average specific capacitance value of NC3 (NiCo2O4 spherical nanoparticles) as 542 F g−1 relatively higher than NC1 and NC2. The electro impendence spectroscopy results explored the small arc formation in high frequency range and very low charge transfer resistance (R ct), which resulted high conductive active materials. The estimated specific capacitance for NC3 exhibited superior galvanstatic charging and discharging (GCD) characteristics with high specific capacitance of 294 F g−1 at high current density of 1 A g−1 and revealed that the obtained electrode is suitable for supercapacitor applications.

Graphical abstract

Hydrothermal synthesis using an excess of Co source leads to smaller and more uniform particle size. This particle size and the slightly larger crystallite size formed in the materials leads to the improved electrochemical performance of the particles. https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4504-y/MediaObjects/10971_2017_4504_Figa_HTML.gif

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Umeshbabu E, Rajeshkhanna G, Ranga Rao G (2016) J Solid State Electrochem 20:837–1844CrossRef Umeshbabu E, Rajeshkhanna G, Ranga Rao G (2016) J Solid State Electrochem 20:837–1844CrossRef
2.
go back to reference Jokar E, Izad A, Shahrokhian S (2015) J Solid State Electrochem 19:269–274CrossRef Jokar E, Izad A, Shahrokhian S (2015) J Solid State Electrochem 19:269–274CrossRef
3.
go back to reference Zhang Y, Wang J, Yu L, Wang L, Wan P, Wei H, Lin L, Hussain S (2017) Ceramics International 43:2057–2062CrossRef Zhang Y, Wang J, Yu L, Wang L, Wan P, Wei H, Lin L, Hussain S (2017) Ceramics International 43:2057–2062CrossRef
4.
5.
go back to reference Ezeigwe ER, Khiew PS, Siong CW, Tan TT (2017) J Alloys Compd 693:133–1142CrossRef Ezeigwe ER, Khiew PS, Siong CW, Tan TT (2017) J Alloys Compd 693:133–1142CrossRef
6.
go back to reference Huanga W, Cao Y, Huang W, Chen Y, Peng J, Lee X, Tu J (2017) Appl Surf Sci 396:804–811CrossRef Huanga W, Cao Y, Huang W, Chen Y, Peng J, Lee X, Tu J (2017) Appl Surf Sci 396:804–811CrossRef
7.
go back to reference Chen S, Chen H, Fan M, Li C, Shu K (2016) J Sol–Gel Sci Technol 80:119–125CrossRef Chen S, Chen H, Fan M, Li C, Shu K (2016) J Sol–Gel Sci Technol 80:119–125CrossRef
8.
9.
go back to reference Bera S, Das N, Pal M, Mahanty S, Jana S (2015) J Sol–Gel Sci Technol 76:402–413CrossRef Bera S, Das N, Pal M, Mahanty S, Jana S (2015) J Sol–Gel Sci Technol 76:402–413CrossRef
10.
12.
go back to reference Zou L, Shen X, Wang Q, Wang Z, Yang X, Jing M (2015) J Sol–Gel Sci Technol 75:54–62CrossRef Zou L, Shen X, Wang Q, Wang Z, Yang X, Jing M (2015) J Sol–Gel Sci Technol 75:54–62CrossRef
13.
go back to reference Sathishkumar K, Shanmugam N, Kannadasan N, Cholan S, Viruthagiri G (2015) J Sol–Gel Sci Technol 74:621–630CrossRef Sathishkumar K, Shanmugam N, Kannadasan N, Cholan S, Viruthagiri G (2015) J Sol–Gel Sci Technol 74:621–630CrossRef
14.
go back to reference Ge C, Hou Z, He B, Zeng F, Cao J, Liu Y, Kuang Y (2012) J Sol–Gel Sci Technol 63:146–152CrossRef Ge C, Hou Z, He B, Zeng F, Cao J, Liu Y, Kuang Y (2012) J Sol–Gel Sci Technol 63:146–152CrossRef
15.
go back to reference Cui H, Zhang F, Ma W, Wang L, Xue J (2016) J Sol–Gel Sci Technol 79:83–88CrossRef Cui H, Zhang F, Ma W, Wang L, Xue J (2016) J Sol–Gel Sci Technol 79:83–88CrossRef
16.
go back to reference Umeshbabu E, Rajeshkhanna G, Justin P, Ranga Rao G (2015) RSC Adv 5:66657–66666CrossRef Umeshbabu E, Rajeshkhanna G, Justin P, Ranga Rao G (2015) RSC Adv 5:66657–66666CrossRef
17.
go back to reference Liu Q, Xiao K, Xu Z, Li N, Su Z, Wanga J, Chen S (2013) RSC Adv 3:34372–34380 Liu Q, Xiao K, Xu Z, Li N, Su Z, Wanga J, Chen S (2013) RSC Adv 3:34372–34380
18.
go back to reference Zhong H, Wang L, Li R, Wang W, Ou N, Tong X (2012) Mater Chem 22:5656–5665CrossRef Zhong H, Wang L, Li R, Wang W, Ou N, Tong X (2012) Mater Chem 22:5656–5665CrossRef
20.
go back to reference Cui B, Lin H, Liu Z, Li B, Sun P, Zhao X, Liu C (2009) J Phys Chem C 113:14083–14087CrossRef Cui B, Lin H, Liu Z, Li B, Sun P, Zhao X, Liu C (2009) J Phys Chem C 113:14083–14087CrossRef
21.
go back to reference Rada H, Haghighia M, Eslamia A, Rahmania F, Rahemia N (2016) Int J Hydrogen Energy 41:5335–5350CrossRef Rada H, Haghighia M, Eslamia A, Rahmania F, Rahemia N (2016) Int J Hydrogen Energy 41:5335–5350CrossRef
22.
go back to reference Patzke GR, Zhou Y, Kontic R, Conrad F (2010) Angew Chem Int Edn 50:826–859CrossRef Patzke GR, Zhou Y, Kontic R, Conrad F (2010) Angew Chem Int Edn 50:826–859CrossRef
24.
go back to reference Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J. Phys. Chem. C 116:12448–12454CrossRef Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J. Phys. Chem. C 116:12448–12454CrossRef
25.
go back to reference Nicholson RS, Shain I (1964) Anal. Chem. 36(706):1351–1355 Nicholson RS, Shain I (1964) Anal. Chem. 36(706):1351–1355
26.
go back to reference Ma G, Zhang Z, Peng H, Sun K, Ran F, Lei Z (2016) J Solid State Electrochem 20:1613–1624CrossRef Ma G, Zhang Z, Peng H, Sun K, Ran F, Lei Z (2016) J Solid State Electrochem 20:1613–1624CrossRef
27.
go back to reference Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Nano Lett 12:321–325CrossRef Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Nano Lett 12:321–325CrossRef
Metadata
Title
Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications
Authors
B. Saravanakumar
T. Priyadharshini
G. Ravi
V. Ganesh
A. Sakunthala
R. Yuvakkumar
Publication date
08-09-2017
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2017
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4504-y

Other articles of this Issue 2/2017

Journal of Sol-Gel Science and Technology 2/2017 Go to the issue

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Surface-deposited nanofibrous TiO2 for photocatalytic degradation of organic pollutants

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

High-temperature ferromagnetism of Cu-doped PbPdO2 nanograin films

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Selective etching of bifunctional core–shell organosilica micro/nanospheres to hollow structures

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity

Review Paper: Educational aspects of sol-gel and hybrid materials

An insight into the structural, electrical and optical properties of SnO 2 nanoparticles

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La,Yb,Ce,Gd) co-doped Y2O3 stabilized ZrO2 powder

Premium Partners