Skip to main content
Top
Published in: Data Mining and Knowledge Discovery 6/2023

08-08-2023

Hypercore decomposition for non-fragile hyperedges: concepts, algorithms, observations, and applications

Authors: Fanchen Bu, Geon Lee, Kijung Shin

Published in: Data Mining and Knowledge Discovery | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of \({\varvec{k}}\)-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However, the previous extensions are based on an unrealistic assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete as soon as a single member leaves it.In this work, we propose a new substructure model, called \({\varvec{(k,t)}}\)-hypercore, based on the assumption that high-order relations remain as long as at least t fraction of the members remains. Specifically, it is defined as the maximal subhypergraph where (1) every node is contained in at least \({\varvec{k}}\) hyperedges in it and (2) at least \({\varvec{t}}\) fraction of the nodes remain in every hyperedge. We first prove that, given \({\varvec{t}}\) (or \({\varvec{k}}\)), finding the \({\varvec{(k,t)}}\)-hypercore for every possible \({\varvec{k}}\) (or \({\varvec{t}}\)) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we demonstrate that real-world hypergraphs from the same domain share similar \({\varvec{(k,t)}}\)-hypercore structures, which capture different perspectives depending on \({\varvec{t}}\). Lastly, we show the successful applications of our model in identifying influential nodes, dense substructures, and vulnerability in hypergraphs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
A multiset is a set al.lowing duplicate elements.
 
2
In this work, the maximal subgraph (subhypergraph) satisfying some conditions means that every other graph (hypergraph) satisfying such conditions is a subgraph (subhypergraph) of the maximal one.
 
3
Similar to clique expansion, we can also have weighted star expansion, which is, however, not used in this work.
 
4
We assume that the input hypergraph is in the memory and thus do not count the complexity of loading the hypergraph, which is \(O(\sum _{e \in E} |e|)\).
 
5
Recall that \(\ell\)-hypercoreness with \(\ell = 2\) is include in t-hypercoreness with \(t = 0\). For each dataset, we apply min-max normalization to all the possible \(\ell\) values with \(\ell \ge 3\) so that t-hypercoreness and \(\ell\)-hypercoreness can fit in the same x-axis with the range [0, 1].
 
6
The average performance over five independent trials is reported.
 
7
We count \(\ell\)-hypercoreness with each \(\ell\) value as a separate method (\(\ell = 2\) is not counted since it is already included in the concept of t-hypercoreness with \(t = 0\)).
 
8
Simplicial complexes can be seen as a special class of hypergraphs.
 
9
The case \(\ell = 2\) is included in the proposed concept of t-hypercoreness with \(t = 0\).
 
Literature
go back to reference Adamic LA, Lukose RM, Puniyani AR et al. (2001) Search in power-law networks. Phys Rev E 64(4):046–135CrossRef Adamic LA, Lukose RM, Puniyani AR et al. (2001) Search in power-law networks. Phys Rev E 64(4):046–135CrossRef
go back to reference Alvarez-Hamelin JI, Dall’Asta L, Barrat A, et al. (2006) Large scale networks fingerprinting and visualization using the k-core decomposition. In: NeurIPS Alvarez-Hamelin JI, Dall’Asta L, Barrat A, et al. (2006) Large scale networks fingerprinting and visualization using the k-core decomposition. In: NeurIPS
go back to reference Alvarez-Hamelin JI, Dall’Asta L, Barrat A et al. (2008) K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Netw Heterog Media 3(2):371MathSciNetCrossRefMATH Alvarez-Hamelin JI, Dall’Asta L, Barrat A et al. (2008) K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Netw Heterog Media 3(2):371MathSciNetCrossRefMATH
go back to reference Arafat NA, Khan A, Rai AK, et al. (2023) Neighborhood-based hypergraph core decomposition. PVLDB 16 Arafat NA, Khan A, Rai AK, et al. (2023) Neighborhood-based hypergraph core decomposition. PVLDB 16
go back to reference Arya D, Gupta DK, Rudinac S, et al. (2020) Hypersage: Generalizing inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558 Arya D, Gupta DK, Rudinac S, et al. (2020) Hypersage: Generalizing inductive representation learning on hypergraphs. arXiv preprint arXiv:​2010.​04558
go back to reference Bai S, Zhang F, Torr PH (2021) Hypergraph convolution and hypergraph attention. Pattern Recogn 110(107):637 Bai S, Zhang F, Torr PH (2021) Hypergraph convolution and hypergraph attention. Pattern Recogn 110(107):637
go back to reference Batagelj V, Zaversnik M (2003) An \(o(m)\) algorithm for cores decomposition of networks. In: arXiv Batagelj V, Zaversnik M (2003) An \(o(m)\) algorithm for cores decomposition of networks. In: arXiv
go back to reference Benson AR, Abebe R, Schaub MT et al. (2018) Simplicial closure and higher-order link prediction. PNAS 115(48):E11221–E11230CrossRef Benson AR, Abebe R, Schaub MT et al. (2018) Simplicial closure and higher-order link prediction. PNAS 115(48):E11221–E11230CrossRef
go back to reference Benson AR, Kumar R, Tomkins A (2018b) Sequences of sets. In: KDD Benson AR, Kumar R, Tomkins A (2018b) Sequences of sets. In: KDD
go back to reference Blanco R, Lioma C (2012) Graph-based term weighting for information retrieval. Inf Retr 15(1):54–92CrossRef Blanco R, Lioma C (2012) Graph-based term weighting for information retrieval. Inf Retr 15(1):54–92CrossRef
go back to reference Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Social Netw 23(3):191–201CrossRef Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Social Netw 23(3):191–201CrossRef
go back to reference Bonchi F, Khan A, Severini L (2019) Distance-generalized core decomposition. In: SIGMOD Bonchi F, Khan A, Severini L (2019) Distance-generalized core decomposition. In: SIGMOD
go back to reference Chein M, Mugnier ML (2008) Graph-based knowledge representation: computational foundations of conceptual graphs. SpringerMATH Chein M, Mugnier ML (2008) Graph-based knowledge representation: computational foundations of conceptual graphs. SpringerMATH
go back to reference Chen Z, Yuan L, Han L, et al. (2021) Higher-order truss decomposition in graphs. In: TKDE Chen Z, Yuan L, Han L, et al. (2021) Higher-order truss decomposition in graphs. In: TKDE
go back to reference Chien E, Pan C, Peng J, et al. (2021) You are allset: a multiset function framework for hypergraph neural networks. arXiv preprint arXiv:2106.13264 Chien E, Pan C, Peng J, et al. (2021) You are allset: a multiset function framework for hypergraph neural networks. arXiv preprint arXiv:​2106.​13264
go back to reference Corominas-Murtra B, Fuchs B, Thurner S (2014) Detection of the elite structure in a virtual multiplex social system by means of a generalised k-core. PLoS ONE 9(12):e11,2606CrossRef Corominas-Murtra B, Fuchs B, Thurner S (2014) Detection of the elite structure in a virtual multiplex social system by means of a generalised k-core. PLoS ONE 9(12):e11,2606CrossRef
go back to reference Cui H, Lu Z, Li P, et al. (2022) On positional and structural node features for graph neural networks on non-attributed graphs. In: CIKM Cui H, Lu Z, Li P, et al. (2022) On positional and structural node features for graph neural networks on non-attributed graphs. In: CIKM
go back to reference Dai Q, Li RH, Qin L, et al. (2021) Scaling up distance-generalized core decomposition. In: CIKM Dai Q, Li RH, Qin L, et al. (2021) Scaling up distance-generalized core decomposition. In: CIKM
go back to reference Debnath S, Ganguly N, Mitra P (2008) Feature weighting in content based recommendation system using social network analysis. In: WWW Debnath S, Ganguly N, Mitra P (2008) Feature weighting in content based recommendation system using social network analysis. In: WWW
go back to reference Do MT, Yoon Se, Hooi B, et al. (2020) Structural patterns and generative models of real-world hypergraphs. In: KDD Do MT, Yoon Se, Hooi B, et al. (2020) Structural patterns and generative models of real-world hypergraphs. In: KDD
go back to reference Feng Y, You H, Zhang Z, et al. (2019) Hypergraph neural networks. In: AAAI Feng Y, You H, Zhang Z, et al. (2019) Hypergraph neural networks. In: AAAI
go back to reference Gabert K, Pinar A, Çatalyürek ÜV (2021a) Shared-memory scalable k-core maintenance on dynamic graphs and hypergraphs. In: IPDPSW Gabert K, Pinar A, Çatalyürek ÜV (2021a) Shared-memory scalable k-core maintenance on dynamic graphs and hypergraphs. In: IPDPSW
go back to reference Gabert K, Pinar A, Çatalyürek ÜV (2021b) A unifying framework to identify dense subgraphs on streams: Graph nuclei to hypergraph cores. In: WSDM Gabert K, Pinar A, Çatalyürek ÜV (2021b) A unifying framework to identify dense subgraphs on streams: Graph nuclei to hypergraph cores. In: WSDM
go back to reference Gao Y, Feng Y, Ji S, et al. (2022) Hgnn\(^{+}\): General hypergraph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence Gao Y, Feng Y, Ji S, et al. (2022) Hgnn\(^{+}\): General hypergraph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence
go back to reference Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855–864 Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp 855–864
go back to reference Han Z, Zheng X, Chen C, et al. (2023) Intra and inter domain hypergraph convolutional network for cross-domain recommendation. In: WWW Han Z, Zheng X, Chen C, et al. (2023) Intra and inter domain hypergraph convolutional network for cross-domain recommendation. In: WWW
go back to reference He T, Ong YS, Bai L (2021) Learning conjoint attentions for graph neural nets. In: NeurIPS He T, Ong YS, Bai L (2021) Learning conjoint attentions for graph neural nets. In: NeurIPS
go back to reference Hua QS, Zhang X, Jin H et al. (2023) Revisiting core maintenance for dynamic hypergraphs. IEEE Trans Parallel Distrib Syst 34:981–994CrossRef Hua QS, Zhang X, Jin H et al. (2023) Revisiting core maintenance for dynamic hypergraphs. IEEE Trans Parallel Distrib Syst 34:981–994CrossRef
go back to reference Jiang J, Wei Y, Feng Y, et al. (2019) Dynamic hypergraph neural networks. In: IJCAI Jiang J, Wei Y, Feng Y, et al. (2019) Dynamic hypergraph neural networks. In: IJCAI
go back to reference Kim H, Ko J, Bu F, et al. (2023) Characterization of simplicial complexes by counting simplets beyond four nodes. In: WWW Kim H, Ko J, Bu F, et al. (2023) Characterization of simplicial complexes by counting simplets beyond four nodes. In: WWW
go back to reference Kim J, Oh S, Cho S, et al. (2022) Equivariant hypergraph neural networks. In: ECCV Kim J, Oh S, Cho S, et al. (2022) Equivariant hypergraph neural networks. In: ECCV
go back to reference Kitsak M, Gallos LK, Havlin S et al. (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef Kitsak M, Gallos LK, Havlin S et al. (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef
go back to reference Ko J, Kook Y, Shin K (2022) Growth patterns and models of real-world hypergraphs. KAIS 64(11):2883–2920 Ko J, Kook Y, Shin K (2022) Growth patterns and models of real-world hypergraphs. KAIS 64(11):2883–2920
go back to reference Lee D, Shin K (2023) I’m me, we’re us, and i’m us: Tri-directional contrastive learning on hypergraphs. In: AAAI Lee D, Shin K (2023) I’m me, we’re us, and i’m us: Tri-directional contrastive learning on hypergraphs. In: AAAI
go back to reference Lee G, Shin K (2021) Thyme+: Temporal hypergraph motifs and fast algorithms for exact counting. In: ICDM Lee G, Shin K (2021) Thyme+: Temporal hypergraph motifs and fast algorithms for exact counting. In: ICDM
go back to reference Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries. PVLDB 13(11):2256–2269 Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries. PVLDB 13(11):2256–2269
go back to reference Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs? - patterns, measures, and generators. In: WWW Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs? - patterns, measures, and generators. In: WWW
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters. TKDD 1(1):2–es Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters. TKDD 1(1):2–es
go back to reference Li P, Wang H, Li K, et al. (2023) Influence without authority: Maximizing information coverage in hypergraphs. In: SDM Li P, Wang H, Li K, et al. (2023) Influence without authority: Maximizing information coverage in hypergraphs. In: SDM
go back to reference Liao X, Xu Y, Ling H (2021) Hypergraph neural networks for hypergraph matching. In: ICCV Liao X, Xu Y, Ling H (2021) Hypergraph neural networks for hypergraph matching. In: ICCV
go back to reference Limnios S, Dasoulas G, Thilikos DM, et al. (2021) Hcore-init: Neural network initialization based on graph degeneracy. In: ICPR Limnios S, Dasoulas G, Thilikos DM, et al. (2021) Hcore-init: Neural network initialization based on graph degeneracy. In: ICPR
go back to reference Liu B, Yuan L, Lin X et al. (2020) Efficient (\(\alpha\), \(\beta\))-core computation in bipartite graphs. VLDB J 29(5):1075–1099CrossRef Liu B, Yuan L, Lin X et al. (2020) Efficient (\(\alpha\), \(\beta\))-core computation in bipartite graphs. VLDB J 29(5):1075–1099CrossRef
go back to reference Lotito QF, Musciotto F, Montresor A et al. (2022) Higher-order motif analysis in hypergraphs. Commun Phys 5(1):79CrossRef Lotito QF, Musciotto F, Montresor A et al. (2022) Higher-order motif analysis in hypergraphs. Commun Phys 5(1):79CrossRef
go back to reference Lu Z, Zhu Y, Zhong M, et al. (2022) On time-optimal (k, p)-core community search in dynamic graphs. In: ICDE Lu Z, Zhu Y, Zhong M, et al. (2022) On time-optimal (k, p)-core community search in dynamic graphs. In: ICDE
go back to reference Luo F, Li B, Wan XF, et al. (2009) Core and periphery structures in protein interaction networks. In: BMC bioinformatics Luo F, Li B, Wan XF, et al. (2009) Core and periphery structures in protein interaction networks. In: BMC bioinformatics
go back to reference Luo Q, Yu D, Cai Z, et al. (2021) Hypercore maintenance in dynamic hypergraphs. In: ICDE Luo Q, Yu D, Cai Z, et al. (2021) Hypercore maintenance in dynamic hypergraphs. In: ICDE
go back to reference Luo Q, Yu D, Cai Z et al. (2022) Toward maintenance of hypercores in large-scale dynamic hypergraphs. VLDB J 32:1–18 Luo Q, Yu D, Cai Z et al. (2022) Toward maintenance of hypercores in large-scale dynamic hypergraphs. VLDB J 32:1–18
go back to reference Malliaros FD, Giatsidis C, Papadopoulos AN et al. (2020) The core decomposition of networks: theory, algorithms and applications. VLDB J 29:61–92CrossRef Malliaros FD, Giatsidis C, Papadopoulos AN et al. (2020) The core decomposition of networks: theory, algorithms and applications. VLDB J 29:61–92CrossRef
go back to reference Mastrandrea R, Fournet J, Barrat A (2015) Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9):e0136497CrossRef Mastrandrea R, Fournet J, Barrat A (2015) Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9):e0136497CrossRef
go back to reference McGlohon M, Akoglu L, Faloutsos C (2008) Weighted graphs and disconnected components: patterns and a generator. In: KDD McGlohon M, Akoglu L, Faloutsos C (2008) Weighted graphs and disconnected components: patterns and a generator. In: KDD
go back to reference Mihalcea R, Radev D (2011) Graph-based Natural Language Processing and Information Retrieval. Cambridge University PressCrossRefMATH Mihalcea R, Radev D (2011) Graph-based Natural Language Processing and Information Retrieval. Cambridge University PressCrossRefMATH
go back to reference Peng C, Kolda TG, Pinar A (2014) Accelerating community detection by using k-core subgraphs. In: arXiv Peng C, Kolda TG, Pinar A (2014) Accelerating community detection by using k-core subgraphs. In: arXiv
go back to reference Peng Y, Zhang Y, Zhang W, et al. (2018) Efficient probabilistic k-core computation on uncertain graphs. In: ICDE Peng Y, Zhang Y, Zhang W, et al. (2018) Efficient probabilistic k-core computation on uncertain graphs. In: ICDE
go back to reference Preti G, De Francisci Morales G, Bonchi F (2021) Strud: Truss decomposition of simplicial complexes. In: WWW Preti G, De Francisci Morales G, Bonchi F (2021) Strud: Truss decomposition of simplicial complexes. In: WWW
go back to reference Qu C, Tao M, Yuan R (2018) A hypergraph-based blockchain model and application in internet of things-enabled smart homes. Sensors 18(9):2784CrossRef Qu C, Tao M, Yuan R (2018) A hypergraph-based blockchain model and application in internet of things-enabled smart homes. Sensors 18(9):2784CrossRef
go back to reference Rossi MEG, Malliaros FD, Vazirgiannis M (2015) Spread it good, spread it fast: Identification of influential nodes in social networks. In: WWW Rossi MEG, Malliaros FD, Vazirgiannis M (2015) Spread it good, spread it fast: Identification of influential nodes in social networks. In: WWW
go back to reference Sarıyüce AE, Pinar A (2018) Peeling bipartite networks for dense subgraph discovery. In: WSDM Sarıyüce AE, Pinar A (2018) Peeling bipartite networks for dense subgraph discovery. In: WSDM
go back to reference Shin K, Eliassi-Rad T, Faloutsos C (2018) Patterns and anomalies in k-cores of real-world graphs with applications. KAIS 54(3):677–710 Shin K, Eliassi-Rad T, Faloutsos C (2018) Patterns and anomalies in k-cores of real-world graphs with applications. KAIS 54(3):677–710
go back to reference Shin K, Hooi B, Faloutsos C (2018) Fast, accurate, and flexible algorithms for dense subtensor mining. TKDD 12(3):1–30CrossRef Shin K, Hooi B, Faloutsos C (2018) Fast, accurate, and flexible algorithms for dense subtensor mining. TKDD 12(3):1–30CrossRef
go back to reference Silva NB, Tsang R, Cavalcanti GD, et al. (2010) A graph-based friend recommendation system using genetic algorithm. In: CEC Silva NB, Tsang R, Cavalcanti GD, et al. (2010) A graph-based friend recommendation system using genetic algorithm. In: CEC
go back to reference Sinha A, Shen Z, Song Y, et al. (2015) An overview of microsoft academic service (mas) and applications. In: WWW Sinha A, Shen Z, Song Y, et al. (2015) An overview of microsoft academic service (mas) and applications. In: WWW
go back to reference Sun B, Chan THH, Sozio M (2020) Fully dynamic approximate k-core decomposition in hypergraphs. TKDD 14(4):1–21CrossRef Sun B, Chan THH, Sozio M (2020) Fully dynamic approximate k-core decomposition in hypergraphs. TKDD 14(4):1–21CrossRef
go back to reference Torres L, Blevins AS, Bassett DS et al. (2021) The why, how, and when of representations for complex systems. SIAM Rev 63:435–485MathSciNetCrossRefMATH Torres L, Blevins AS, Bassett DS et al. (2021) The why, how, and when of representations for complex systems. SIAM Rev 63:435–485MathSciNetCrossRefMATH
go back to reference Tudisco F, Higham DJ (2021) Node and edge nonlinear eigenvector centrality for hypergraphs. Commun Phys 4(1):1–10 Tudisco F, Higham DJ (2021) Node and edge nonlinear eigenvector centrality for hypergraphs. Commun Phys 4(1):1–10
go back to reference Victor F, Akcora CG, Gel YR, et al. (2021) Alphacore: data depth based core decomposition. In: KDD Victor F, Akcora CG, Gel YR, et al. (2021) Alphacore: data depth based core decomposition. In: KDD
go back to reference Vogiatzis D (2013) Influence study on hyper-graphs. In: AAAI Symposia Vogiatzis D (2013) Influence study on hyper-graphs. In: AAAI Symposia
go back to reference Wang K, Cao X, Lin X, et al. (2018) Efficient computing of radius-bounded k-cores. In: ICDE Wang K, Cao X, Lin X, et al. (2018) Efficient computing of radius-bounded k-cores. In: ICDE
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRefMATH Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442CrossRefMATH
go back to reference Wu T, Ling Q (2023) Self-supervised heterogeneous hypergraph network for knowledge tracing. Inf Sci 624:200–216CrossRef Wu T, Ling Q (2023) Self-supervised heterogeneous hypergraph network for knowledge tracing. Inf Sci 624:200–216CrossRef
go back to reference Xia L, Huang C, Xu Y, et al. (2022) Hypergraph contrastive collaborative filtering. In: SIGIR Xia L, Huang C, Xu Y, et al. (2022) Hypergraph contrastive collaborative filtering. In: SIGIR
go back to reference Xie M, Zhan X, Liu C, et al. (2023) An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs. Inf Process Manage 60(2):103161CrossRef Xie M, Zhan X, Liu C, et al. (2023) An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs. Inf Process Manage 60(2):103161CrossRef
go back to reference Yang C, Wang R, Yao S, et al. (2022) Semi-supervised hypergraph node classification on hypergraph line expansion. In: CIKM Yang C, Wang R, Yao S, et al. (2022) Semi-supervised hypergraph node classification on hypergraph line expansion. In: CIKM
go back to reference Yin H, Benson AR, Leskovec J, et al. (2017) Local higher-order graph clustering. In: KDD Yin H, Benson AR, Leskovec J, et al. (2017) Local higher-order graph clustering. In: KDD
go back to reference Zhang C, Zhang F, Zhang W, et al. (2020) Exploring finer granularity within the cores: efficient (k, p)-core computation. In: ICDE Zhang C, Zhang F, Zhang W, et al. (2020) Exploring finer granularity within the cores: efficient (k, p)-core computation. In: ICDE
go back to reference Zhang F, Zhang Y, Qin L, et al. (2017a) Finding critical users for social network engagement: the collapsed k-core problem. In: AAAI Zhang F, Zhang Y, Qin L, et al. (2017a) Finding critical users for social network engagement: the collapsed k-core problem. In: AAAI
go back to reference Zhang F, Zhang Y, Qin L, et al. (2017b) When engagement meets similarity: efficient (k, r)-core computation on social networks. In: PVLDB Zhang F, Zhang Y, Qin L, et al. (2017b) When engagement meets similarity: efficient (k, r)-core computation on social networks. In: PVLDB
go back to reference Zhang Y, Parthasarathy S (2012) Extracting analyzing and visualizing triangle k-core motifs within networks. In: ICDE Zhang Y, Parthasarathy S (2012) Extracting analyzing and visualizing triangle k-core motifs within networks. In: ICDE
go back to reference Zhu J, Zhu J, Ghosh S et al. (2018) Social influence maximization in hypergraph in social networks. TNSE 6(4):801–811MathSciNet Zhu J, Zhu J, Ghosh S et al. (2018) Social influence maximization in hypergraph in social networks. TNSE 6(4):801–811MathSciNet
go back to reference Zhu W, Chen C, Wang X, et al. (2018b) K-core minimization: an edge manipulation approach. In: CIKM Zhu W, Chen C, Wang X, et al. (2018b) K-core minimization: an edge manipulation approach. In: CIKM
go back to reference Zhu W, Zhang M, Chen C, et al. (2019) Pivotal relationship identification: the k-truss minimization problem. In: IJCAI Zhu W, Zhang M, Chen C, et al. (2019) Pivotal relationship identification: the k-truss minimization problem. In: IJCAI
go back to reference Zien JY, Schlag MD, Chan PK (1999) Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Trans Comput Aided Des Integr Circuits Syst 18(9):1389–1399CrossRef Zien JY, Schlag MD, Chan PK (1999) Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Trans Comput Aided Des Integr Circuits Syst 18(9):1389–1399CrossRef
Metadata
Title
Hypercore decomposition for non-fragile hyperedges: concepts, algorithms, observations, and applications
Authors
Fanchen Bu
Geon Lee
Kijung Shin
Publication date
08-08-2023
Publisher
Springer US
Published in
Data Mining and Knowledge Discovery / Issue 6/2023
Print ISSN: 1384-5810
Electronic ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-023-00956-2

Other articles of this Issue 6/2023

Data Mining and Knowledge Discovery 6/2023 Go to the issue

Premium Partner