Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-03-2018 | Special Issue 2/2019

Cluster Computing 2/2019

Identification and classification of best spreader in the domain of interest over the social networks

Journal:
Cluster Computing > Special Issue 2/2019
Authors:
A. N. Arularasan, A. Suresh, Koteeswaran Seerangan

Abstract

The emerging social networks promptly create greater opportunities for fast-developing viral marketing. The online social networks (OSNs) play an essential role in the information diffusion among the social users within the community. The social network being large-scale, it leads to the inconvenience in identifying the influential spreaders in a specific domain, as every social user receives the information from different sources through multiple connections over the network. Although, analyzing the complex social network is indispensable to determine the influence spreaders with the knowledge of understanding the dynamics of information evolution. The existing solutions of the influential measurement techniques lack in neglecting the redundant links and quantifying the temporal information among the social users while estimating the diffusion importance of a social user. Moreover, these techniques fail in analyzing the structural relationships in the domain. To overcome these obstacles, this paper presents a de-duplicated k-shell influence estimation (DKIE) model in the social network by classifying the influential spreaders based on the domain of interest using k-shell decomposition and N-gram similarity. The DKIE model incorporates two major phases such as generic influential spreader identification and domain-specific influential spreader identification. The first phase measures the diffusion importance of each active social user based on the structural relationships of the social network using k-shell decomposition method. It separates the core-like groups and true core and identifies the best spreaders regardless of the redundant links. The second phase exploits the topic of the discussion of the best spreaders and consequently, measures the topic-wise influence to categorize the domain-specific best spreaders using N-gram similarity measurement. The experimental results illustrate the effectiveness of DKIE approach.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Special Issue 2/2019

Cluster Computing 2/2019 Go to the issue

Premium Partner

    Image Credits