Skip to main content
Top
Published in: Wireless Networks 5/2019

26-12-2017

Impact of mobility on energy consumption in wireless networks

Authors: Mengmeng Xu, Qinghai Yang, Kyung Sup Kwak, Daeyoung Park

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate the impacts of mobility on the characterization of energy consumption in wireless networks. Considering a linear wireless network deployed for an information-collecting purpose, which includes a fixed sink node and a number of mobile nodes, the analytical expressions of the energy consumption are derived for each mobile node, which either adopts multi-hop or opportunistic routing for packet transmission to the sink node. The derived expressions are applied to analyze the network lifetime. We also compare the multi-hop routing and the opportunistic routing in terms of energy consumption and network lifetime. Our results provide several insights into the interplay between mobility, routing strategy and energy consumption. Specifically, we find that a certain degree of mobility has a significant benefit to the efficient and balanced energy usage, and consequently improving the network lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that the periodical signaling exchange is referred as proactive protocol. There also exists another paradigm, called reactive protocol, in which a node collects the neighboring information to find its next relay when a message is to be delivered to the sink. A comprehensive comparison of these two protocols in energy dissipation could be found in [4].
 
Literature
1.
go back to reference Azad, A., & Kamruzzaman, J. (2011). Energy-balanced transmission policies for wireless sensor networks. IEEE Transactions Mobile Computing, 10(7), 927–940.CrossRef Azad, A., & Kamruzzaman, J. (2011). Energy-balanced transmission policies for wireless sensor networks. IEEE Transactions Mobile Computing, 10(7), 927–940.CrossRef
2.
go back to reference Cassandras, C. G., Wang, T., & Pourazarm, S. (2014). Optimal routing and energy allocation for lifetime maximization of wirless sensor networks with nonideal batteries. IEEE Transactions Control of Network Systems, 1(1), 86–98.MathSciNetCrossRefMATH Cassandras, C. G., Wang, T., & Pourazarm, S. (2014). Optimal routing and energy allocation for lifetime maximization of wirless sensor networks with nonideal batteries. IEEE Transactions Control of Network Systems, 1(1), 86–98.MathSciNetCrossRefMATH
3.
go back to reference Zuo, J., Dong, C., Ng, S., et al. (2015). Cross-layer aided energy-efficient routing design for ad hoc networks. IEEE Communications Surveys and Tutorials, 17(3), 1214–1238.CrossRef Zuo, J., Dong, C., Ng, S., et al. (2015). Cross-layer aided energy-efficient routing design for ad hoc networks. IEEE Communications Surveys and Tutorials, 17(3), 1214–1238.CrossRef
4.
go back to reference Zhao, Q., & Tong, L. (2005). Energy efficiency of large-scale wireless networks: Proactive versus reactive networking. IEEE Jounal Selected Areas in Communications, 23(5), 1100–1112.CrossRef Zhao, Q., & Tong, L. (2005). Energy efficiency of large-scale wireless networks: Proactive versus reactive networking. IEEE Jounal Selected Areas in Communications, 23(5), 1100–1112.CrossRef
5.
go back to reference Halder, S., & Bit, S. D. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal Network and Computer Applications, 38(1), 106–123.CrossRef Halder, S., & Bit, S. D. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal Network and Computer Applications, 38(1), 106–123.CrossRef
6.
go back to reference Fan, T., Teng, G., & Huo, L. (2014). Deployment strategy of WSN based on mininmizing cost per unit area. Computer Communications, 38(1), 26–35. Fan, T., Teng, G., & Huo, L. (2014). Deployment strategy of WSN based on mininmizing cost per unit area. Computer Communications, 38(1), 26–35.
7.
go back to reference Grossglauser, M., & Tse, D. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions Networking, 10(4), 477–486.CrossRef Grossglauser, M., & Tse, D. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions Networking, 10(4), 477–486.CrossRef
8.
go back to reference Sharma, G., Mazumdar, R., & Shroff, N. (2007). Delay and capacity tradeoffs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactios on Networking, 15(5), 981–992.CrossRef Sharma, G., Mazumdar, R., & Shroff, N. (2007). Delay and capacity tradeoffs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactios on Networking, 15(5), 981–992.CrossRef
9.
go back to reference Liu, B., Brass, P., et al. (2005). Mobility improves coverage of sensor networks. In Proceedings of ACM MobiHoc (pp. 300–308 ). Liu, B., Brass, P., et al. (2005). Mobility improves coverage of sensor networks. In Proceedings of ACM MobiHoc (pp. 300–308 ).
10.
go back to reference Wang, X., Lin, X., Wang, Q., & Luan, W. (2013). Mobility increases the connectivity of wireless networks. IEEE/ACM Transactions Networking, 21(2), 440–454.CrossRef Wang, X., Lin, X., Wang, Q., & Luan, W. (2013). Mobility increases the connectivity of wireless networks. IEEE/ACM Transactions Networking, 21(2), 440–454.CrossRef
11.
go back to reference Wang, D., & Abouzeid, A. A. (2012). On the cost of knowledge of mobility in dynamic networks: An information-theoretic approach. IEEE Transactions Mobile Computing, 11(6), 995–1006.CrossRef Wang, D., & Abouzeid, A. A. (2012). On the cost of knowledge of mobility in dynamic networks: An information-theoretic approach. IEEE Transactions Mobile Computing, 11(6), 995–1006.CrossRef
12.
go back to reference Cong, Y., Zhou, X., & Kennedy, R. (2015). Interference prediction in mobile ad hoc networks with a general mobility model. IEEE Transactions on Wireless Communications, 14(8), 4277–4290.CrossRef Cong, Y., Zhou, X., & Kennedy, R. (2015). Interference prediction in mobile ad hoc networks with a general mobility model. IEEE Transactions on Wireless Communications, 14(8), 4277–4290.CrossRef
13.
go back to reference Wang, W., Srinivasan, V., & Chua, K. (2008). Extending the lifetime of wireless sensor networks through mobile relays. IEEE/ACM Transactions Networking, 16(5), 1108–1120.CrossRef Wang, W., Srinivasan, V., & Chua, K. (2008). Extending the lifetime of wireless sensor networks through mobile relays. IEEE/ACM Transactions Networking, 16(5), 1108–1120.CrossRef
14.
go back to reference Tashtarian, F., Moghaddam, M., et al. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions Vehicular Technology, 64(7), 3177–3189. Tashtarian, F., Moghaddam, M., et al. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions Vehicular Technology, 64(7), 3177–3189.
15.
go back to reference Cavirpunar, O., Kadioglu-Urtis, E., & Tavli, B. (2015). Optimal base station mobility patterns for wireless sensor network lifetime maximization. IEEE Sensors Journal, 15(11), 6592–6603.CrossRef Cavirpunar, O., Kadioglu-Urtis, E., & Tavli, B. (2015). Optimal base station mobility patterns for wireless sensor network lifetime maximization. IEEE Sensors Journal, 15(11), 6592–6603.CrossRef
16.
go back to reference Wang, C., Guo, S., & Yang, Y. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions Mobile Computing, 15(12), 2969–2986.CrossRef Wang, C., Guo, S., & Yang, Y. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions Mobile Computing, 15(12), 2969–2986.CrossRef
17.
go back to reference Pala, Z., Bicakci, K., & Tavli, B. (2013). Mobility helps energy balancing in wireless networks. In IEEE Military Communications Conference (pp. 293–298). Pala, Z., Bicakci, K., & Tavli, B. (2013). Mobility helps energy balancing in wireless networks. In IEEE Military Communications Conference (pp. 293–298).
18.
go back to reference Shen, C., Tekin, C., & Schaar, M. (2016). A non-stochastic learning approach to energy efficient mobility management. IEEE Journal Selected Areas in Communications, 34(12), 3854–3868.CrossRef Shen, C., Tekin, C., & Schaar, M. (2016). A non-stochastic learning approach to energy efficient mobility management. IEEE Journal Selected Areas in Communications, 34(12), 3854–3868.CrossRef
19.
go back to reference Qiao, G., Leng, S., Zhang, K., & Yang, K. (2016). Joint deployment and mobility management of energy harvesting small celles in heterogeneous networks. IEEE Access, 5, 183–196.CrossRef Qiao, G., Leng, S., Zhang, K., & Yang, K. (2016). Joint deployment and mobility management of energy harvesting small celles in heterogeneous networks. IEEE Access, 5, 183–196.CrossRef
20.
go back to reference Mahboubi, H., Masoudimansour, W., et al. (2016). Maximum lifetime strategy for target monitoring with controlled node mobility in sensor networks with obstacles. IEEE Transactions Automatic Control, 61(11), 3493–3508.MathSciNetCrossRefMATH Mahboubi, H., Masoudimansour, W., et al. (2016). Maximum lifetime strategy for target monitoring with controlled node mobility in sensor networks with obstacles. IEEE Transactions Automatic Control, 61(11), 3493–3508.MathSciNetCrossRefMATH
21.
go back to reference Nain, P., Towsley, D., Liu, B., & Liu, Z. (2005). Properties of random direction models. In Proceedings of INFOCOM (pp. 1897–1907). Nain, P., Towsley, D., Liu, B., & Liu, Z. (2005). Properties of random direction models. In Proceedings of INFOCOM (pp. 1897–1907).
22.
go back to reference Samar, P., & Wicker, S. B. (2006). Link dynamics and protocol design in a multihop mobile environment. IEEE Transactions Mobile Computing, 5(9), 1156–1172.CrossRef Samar, P., & Wicker, S. B. (2006). Link dynamics and protocol design in a multihop mobile environment. IEEE Transactions Mobile Computing, 5(9), 1156–1172.CrossRef
Metadata
Title
Impact of mobility on energy consumption in wireless networks
Authors
Mengmeng Xu
Qinghai Yang
Kyung Sup Kwak
Daeyoung Park
Publication date
26-12-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1646-3

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue