Skip to main content
Top
Published in: Microsystem Technologies 4/2015

01-04-2015 | Technical Paper

Improved sensitivity of micro thermal sensor for underwater wall shear stress measurement

Authors: Pengfei Zhu, Binghe Ma, Chengyu Jiang, Jinjun Deng, Yunlong Wang

Published in: Microsystem Technologies | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Drive current is an important parameter of thermal shear stress sensor. Increasing drive current is helpful for enhancing its sensitivity. However, there must be an allowable drive current for the sake of safe working temperature of the sensor. How to make full use of drive current to increase the sensor’s sensitivity working underwater was studied. If the allowable drive current in still water and the current in stream water are used to drive the sensor in lower and higher shear stress input ranges, respectively, sensitivity of the sensor will be enhanced with the sensor working under a safe temperature. The both currents were separately determined by analyzing I–V characteristic and output voltage-shear stress relationship. We can improve the sensor’s sensitivity from 11.8 to 27.5 mV/Pa when shear stress input was 0.4 Pa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bellhouse B, Schultz DL (1966) Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin-film heated element. J Fluid Mech 24(02):379–400CrossRef Bellhouse B, Schultz DL (1966) Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin-film heated element. J Fluid Mech 24(02):379–400CrossRef
go back to reference Beutel T, Leester-Schädel M et al (2013a) Manufacturing of flexible micro hot-film probes for aeronautical purposes. Microelectron Eng 111:238–241 Beutel T, Leester-Schädel M et al (2013a) Manufacturing of flexible micro hot-film probes for aeronautical purposes. Microelectron Eng 111:238–241
go back to reference Beutel T, Schwerter M et al (2013b) Flexible hot-film anemometer arrays for flow measurements on curved structures. SPIE Microtechnologies, International Society for Optics and Photonics 8763:87630N-1–87630N-8 Beutel T, Schwerter M et al (2013b) Flexible hot-film anemometer arrays for flow measurements on curved structures. SPIE Microtechnologies, International Society for Optics and Photonics 8763:87630N-1–87630N-8
go back to reference Goldstein RJ (1996) Fluid mechanics measurements. Taylor & Francis, New York Goldstein RJ (1996) Fluid mechanics measurements. Taylor & Francis, New York
go back to reference Jiang F, Tai Y-C et al (1994) Theoretical and experimental studies of micromachined hot-wire anemometers. In: IEDM’94 Electron devices meeting. Technical digest., international. IEEE, San Francisco, CA, pp 139-142 Jiang F, Tai Y-C et al (1994) Theoretical and experimental studies of micromachined hot-wire anemometers. In: IEDM’94 Electron devices meeting. Technical digest., international. IEEE, San Francisco, CA, pp 139-142
go back to reference Kimura M, Tung S et al (1999) Measurements of wall shear stress of a turbulent boundary layer using a micro-shear-stress imaging chip. Fluid Dyn Res 24(6):329–342CrossRef Kimura M, Tung S et al (1999) Measurements of wall shear stress of a turbulent boundary layer using a micro-shear-stress imaging chip. Fluid Dyn Res 24(6):329–342CrossRef
go back to reference Lin Q, Xu Y et al (2005) A parametrized three-dimensional model for MEMS thermal shear-stress sensors. J Microelectromech Syst 14(3):625–633CrossRefMathSciNet Lin Q, Xu Y et al (2005) A parametrized three-dimensional model for MEMS thermal shear-stress sensors. J Microelectromech Syst 14(3):625–633CrossRefMathSciNet
go back to reference Liu C, Tai Y-C et al (1994) Surface micromachined thermal shear stress sensor. Electr Eng 116:81 Liu C, Tai Y-C et al (1994) Surface micromachined thermal shear stress sensor. Electr Eng 116:81
go back to reference Liu K, Yuan W et al (2007) Detecting boundary-layer separation point with a micro shear stress sensor array. Sens Actuat A 139(1):31–35CrossRef Liu K, Yuan W et al (2007) Detecting boundary-layer separation point with a micro shear stress sensor array. Sens Actuat A 139(1):31–35CrossRef
go back to reference Liu P, Zhu R et al (2009) A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors 9(12):9533–9543CrossRef Liu P, Zhu R et al (2009) A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors 9(12):9533–9543CrossRef
go back to reference Ma B, Ren J et al (2010) Flexible thermal sensor array on PI film substrate for underwater applications. In: IEEE 23rd international conference on micro electro mechanical systems (MEMS). IEEE, Wanchai, Hong Kong, pp 679-682 Ma B, Ren J et al (2010) Flexible thermal sensor array on PI film substrate for underwater applications. In: IEEE 23rd international conference on micro electro mechanical systems (MEMS). IEEE, Wanchai, Hong Kong, pp 679-682
go back to reference Osorio O, Silin N (2011) Wall shear stress hot film sensor for use in gases. J Phys Conf Ser 296(1):012002 Osorio O, Silin N (2011) Wall shear stress hot film sensor for use in gases. J Phys Conf Ser 296(1):012002
go back to reference Senzhi S, Yueting X et al (2003) Hot-wire (film) anemometer. China Science and Technology Press, Beijing Senzhi S, Yueting X et al (2003) Hot-wire (film) anemometer. China Science and Technology Press, Beijing
go back to reference Sheplak M, Chandrasekaran V et al (2002) Characterization of a silicon-micromachined thermal shear-stress sensor. AIAA J 40(6):1099–1104CrossRef Sheplak M, Chandrasekaran V et al (2002) Characterization of a silicon-micromachined thermal shear-stress sensor. AIAA J 40(6):1099–1104CrossRef
go back to reference Sturm H, Dumstorff G et al (2012) Boundary layer separation and reattachment detection on airfoils by thermal flow sensors. Sensors 12(11):14292–14306CrossRef Sturm H, Dumstorff G et al (2012) Boundary layer separation and reattachment detection on airfoils by thermal flow sensors. Sensors 12(11):14292–14306CrossRef
go back to reference Tan Z, Shikida M et al (2007a) Experimental and theoretical study of an on-wall in-tube flexible thermal sensor. J Micromech Microeng 17(4):679CrossRef Tan Z, Shikida M et al (2007a) Experimental and theoretical study of an on-wall in-tube flexible thermal sensor. J Micromech Microeng 17(4):679CrossRef
go back to reference Tan Z, Shikida M et al (2007b) Characteristics of on-wall in-tube flexible thermal flow sensor under radially asymmetric flow condition. Sens Actuat A 138(1):87–96CrossRef Tan Z, Shikida M et al (2007b) Characteristics of on-wall in-tube flexible thermal flow sensor under radially asymmetric flow condition. Sens Actuat A 138(1):87–96CrossRef
go back to reference Wang Y-H, Lee C-Y et al (2007) A MEMS-based air flow sensor with a free-standing micro-cantilever structure. Sensors 7(10):2389–2401CrossRef Wang Y-H, Lee C-Y et al (2007) A MEMS-based air flow sensor with a free-standing micro-cantilever structure. Sensors 7(10):2389–2401CrossRef
go back to reference Xu Y, Chiu C-W et al (2005a) A MEMS multi-sensor chip for gas flow sensing. Sens Actuat A 121(1):253–261CrossRef Xu Y, Chiu C-W et al (2005a) A MEMS multi-sensor chip for gas flow sensing. Sens Actuat A 121(1):253–261CrossRef
go back to reference Xu Y, Lin Q et al (2005b) Micromachined thermal shear-stress sensor for underwater applications. J Microelectromech Syst 14(5):1023–1030CrossRef Xu Y, Lin Q et al (2005b) Micromachined thermal shear-stress sensor for underwater applications. J Microelectromech Syst 14(5):1023–1030CrossRef
go back to reference Zhang X, Naughton JW et al (2008) Working principle simulations of a dynamic resonant wall shear stress sensor concept. Sensors 8(4):2707–2721CrossRef Zhang X, Naughton JW et al (2008) Working principle simulations of a dynamic resonant wall shear stress sensor concept. Sensors 8(4):2707–2721CrossRef
Metadata
Title
Improved sensitivity of micro thermal sensor for underwater wall shear stress measurement
Authors
Pengfei Zhu
Binghe Ma
Chengyu Jiang
Jinjun Deng
Yunlong Wang
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4/2015
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2304-7

Other articles of this Issue 4/2015

Microsystem Technologies 4/2015 Go to the issue