Skip to main content
Top
Published in: Journal of Electronic Materials 7/2023

06-05-2023 | Original Research Article

Improving the Efficiency and Pressure Resistance of Inorganic Sealant–Filled Thermoelectric Module

Authors: Shijun Wu, Yongchao Sun, Qingchao Xia, Xiaotao Gai, Canjun Yang

Published in: Journal of Electronic Materials | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoelectric generators have garnered considerable attention because of their ability to convert thermal energy directly into electricity. In this study, we propose a method to improve the pressure resistance and power generation of thermoelectric modules (TEMs). Silicate inorganic sealant and hollow glass beads, which have good electrical and thermal insulation properties, were used as fillers. A complete hybrid filling process was developed to fill the gaps in the TEM using the filler. Self-made experimental instruments were developed to study the effects of various factors, such as temperature, pressure, and mixing ratio of the filler, affecting the TEM power generation performance. The results showed that the filler effectively improved the compressive strength of the TEM, increasing the pressure resistance of the TEM from 10 MPa to 30 MPa. Moreover, the filled TEM generated 2.17 W at 30 MPa, which was 50.69% higher than that of commercially available pressure-resistant TEM with similar sizes. These results can help in the use of TEM in high-pressure environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.-R. Yan, M.A. Fazilati, N. Samani, H.R. Ghasemi, D. Toghraie, Q. Nguyen, and A. Karimipour, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J. Energy Storage 30, 101445 (2020).CrossRef S.-R. Yan, M.A. Fazilati, N. Samani, H.R. Ghasemi, D. Toghraie, Q. Nguyen, and A. Karimipour, Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J. Energy Storage 30, 101445 (2020).CrossRef
2.
go back to reference S. Sen and S. Ganguly, Opportunities, barriers and issues with renewable energy development–a discussion. Renew. Sustain. Energy Rev. 69, 1170 (2017).CrossRef S. Sen and S. Ganguly, Opportunities, barriers and issues with renewable energy development–a discussion. Renew. Sustain. Energy Rev. 69, 1170 (2017).CrossRef
3.
go back to reference F. Tohidi, S. Ghazanfari Holagh, and A. Chitsaz, Thermoelectric generators: a comprehensive review of characteristics and applications. Appl. Therm. Eng. 201, 117793 (2022).CrossRef F. Tohidi, S. Ghazanfari Holagh, and A. Chitsaz, Thermoelectric generators: a comprehensive review of characteristics and applications. Appl. Therm. Eng. 201, 117793 (2022).CrossRef
4.
go back to reference J. Chen, R. Wang, D. Luo, and W. Zhou, Performance optimization of a segmented converging thermoelectric generator for waste heat recovery. Appl. Therm. Eng. 202, 117843 (2022).CrossRef J. Chen, R. Wang, D. Luo, and W. Zhou, Performance optimization of a segmented converging thermoelectric generator for waste heat recovery. Appl. Therm. Eng. 202, 117843 (2022).CrossRef
5.
go back to reference R. Wang, Y. Fu, D. Luo, J. Chen, and W. Zhou, Performance evaluation of an automotive thermoelectric generator with a non-isometric distributed fin heat exchanger. Sustain. Energy Fuels 6, 4446 (2022).CrossRef R. Wang, Y. Fu, D. Luo, J. Chen, and W. Zhou, Performance evaluation of an automotive thermoelectric generator with a non-isometric distributed fin heat exchanger. Sustain. Energy Fuels 6, 4446 (2022).CrossRef
6.
go back to reference A. Kotkondawar, A. Bhende, V. Khond, and S. Rayalu, Performance evaluation of PV-TEC coupling device for power production with improved hybrid nanocarbon based thermal material interface. Energy Rep. 7, 6868 (2021).CrossRef A. Kotkondawar, A. Bhende, V. Khond, and S. Rayalu, Performance evaluation of PV-TEC coupling device for power production with improved hybrid nanocarbon based thermal material interface. Energy Rep. 7, 6868 (2021).CrossRef
7.
go back to reference O. Rejeb, S. Shittu, C. Ghenai, G. Li, X. Zhao, and M. Bettayeb, Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renew. Energy 152, 1342 (2020).CrossRef O. Rejeb, S. Shittu, C. Ghenai, G. Li, X. Zhao, and M. Bettayeb, Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renew. Energy 152, 1342 (2020).CrossRef
8.
go back to reference H. Abedi, F. Migliorini, R. Dondè, S. De Iuliis, F. Passaretti, and C. Fanciulli, Small size thermoelectric power supply for battery backup. Energy 188, 116061 (2019).CrossRef H. Abedi, F. Migliorini, R. Dondè, S. De Iuliis, F. Passaretti, and C. Fanciulli, Small size thermoelectric power supply for battery backup. Energy 188, 116061 (2019).CrossRef
9.
go back to reference X. Zhu, Y. Yu, and F. Li, A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future. Constr. Build. Mater. 228, 116818 (2019).CrossRef X. Zhu, Y. Yu, and F. Li, A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future. Constr. Build. Mater. 228, 116818 (2019).CrossRef
10.
go back to reference J. Pei, B. Zhou, and L. Lyu, e-Road: The largest energy supply of the future? Appl. Energy 241, 174 (2019).CrossRef J. Pei, B. Zhou, and L. Lyu, e-Road: The largest energy supply of the future? Appl. Energy 241, 174 (2019).CrossRef
11.
go back to reference L. Sigrist, N. Stricker, D. Bernath, J. Beutel, and L. Thiele, Thermoelectric energy harvesting from gradients in the earth surface. IEEE Trans. Ind. Electron. 67, 9460 (2020).CrossRef L. Sigrist, N. Stricker, D. Bernath, J. Beutel, and L. Thiele, Thermoelectric energy harvesting from gradients in the earth surface. IEEE Trans. Ind. Electron. 67, 9460 (2020).CrossRef
12.
go back to reference Q. Lin, Y.-C. Chen, F. Chen, T. DeGanyar, and H. Yin, Design and experiments of a thermoelectric-powered wireless sensor network platform for smart building envelope. Appl. Energy 305, 117791 (2022).CrossRef Q. Lin, Y.-C. Chen, F. Chen, T. DeGanyar, and H. Yin, Design and experiments of a thermoelectric-powered wireless sensor network platform for smart building envelope. Appl. Energy 305, 117791 (2022).CrossRef
13.
go back to reference K. Liu, X. Tang, Y. Liu, Z. Xu, Z. Yuan, D. Ji, and S. Ramakrishna, Experimental optimization of small–scale structure–adjustable radioisotope thermoelectric generators. Appl. Energy 280, 115907 (2020).CrossRef K. Liu, X. Tang, Y. Liu, Z. Xu, Z. Yuan, D. Ji, and S. Ramakrishna, Experimental optimization of small–scale structure–adjustable radioisotope thermoelectric generators. Appl. Energy 280, 115907 (2020).CrossRef
14.
go back to reference K. Yazawa and A. Shakouri, Thermoelectric topping cycles with scalable design and temperature dependent material properties. Scr. Mater. 111, 58 (2016).CrossRef K. Yazawa and A. Shakouri, Thermoelectric topping cycles with scalable design and temperature dependent material properties. Scr. Mater. 111, 58 (2016).CrossRef
15.
go back to reference L. Catalan, M. Araiz, P. Aranguren, and D. Astrain, Computational study of geothermal thermoelectric generators with phase change heat exchangers. Energy Convers. Manag. 221, 113120 (2020).CrossRef L. Catalan, M. Araiz, P. Aranguren, and D. Astrain, Computational study of geothermal thermoelectric generators with phase change heat exchangers. Energy Convers. Manag. 221, 113120 (2020).CrossRef
16.
go back to reference K. Wang and X. Wu, Downhole thermoelectric generation in unconventional horizontal wells. Fuel 254, 115530 (2019).CrossRef K. Wang and X. Wu, Downhole thermoelectric generation in unconventional horizontal wells. Fuel 254, 115530 (2019).CrossRef
17.
go back to reference Y. Xie, S. Wu, and C. Yang, Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter. Appl. Energy 164, 620 (2016).CrossRef Y. Xie, S. Wu, and C. Yang, Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter. Appl. Energy 164, 620 (2016).CrossRef
18.
go back to reference C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009).CrossRef C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83 (2009).CrossRef
19.
go back to reference Z. Ma, J. Wei, P. Song, M. Zhang, L. Yang, J. Ma, W. Liu, F. Yang, and X. Wang, Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci. Semicond. Process. 121, 105303 (2021).CrossRef Z. Ma, J. Wei, P. Song, M. Zhang, L. Yang, J. Ma, W. Liu, F. Yang, and X. Wang, Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci. Semicond. Process. 121, 105303 (2021).CrossRef
20.
go back to reference D. Pandel, M.K. Banerjee, and A.K. Singh, A review of the Mg2(Si, Sn) alloy system as emerging thermoelectric material: experimental and modeling aspects. J. Electron. Mater. 50, 25 (2021).CrossRef D. Pandel, M.K. Banerjee, and A.K. Singh, A review of the Mg2(Si, Sn) alloy system as emerging thermoelectric material: experimental and modeling aspects. J. Electron. Mater. 50, 25 (2021).CrossRef
21.
go back to reference D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manag. 140, 167 (2017).CrossRef D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manag. 140, 167 (2017).CrossRef
22.
go back to reference M. Abid, R. Somdalen, and M.S. Rodrigo, Design optimization of a thermoelectric cooling module using finite element simulations. J. Electron. Mater. 47, 4845 (2018).CrossRef M. Abid, R. Somdalen, and M.S. Rodrigo, Design optimization of a thermoelectric cooling module using finite element simulations. J. Electron. Mater. 47, 4845 (2018).CrossRef
23.
go back to reference Y. Lobunets, Improving the economic efficiency of thermoelectric generators by optimizing heat transfer conditions. J. Electron. Mater. 50, 2860 (2021).CrossRef Y. Lobunets, Improving the economic efficiency of thermoelectric generators by optimizing heat transfer conditions. J. Electron. Mater. 50, 2860 (2021).CrossRef
24.
go back to reference Z.F. Wen, Y. Sun, A.B. Zhang, B.L. Wang, J. Wang, and J.K. Du, Performance analysis of a segmented annular thermoelectric generator. J. Electron. Mater. 49, 4830 (2020).CrossRef Z.F. Wen, Y. Sun, A.B. Zhang, B.L. Wang, J. Wang, and J.K. Du, Performance analysis of a segmented annular thermoelectric generator. J. Electron. Mater. 49, 4830 (2020).CrossRef
25.
go back to reference M. Wolf, A. Rybakov, R. Hinterding, and A. Feldhoff, Geometry optimization of thermoelectric modules: deviation of optimum power output and conversion efficiency. Entropy 22, 1233 (2020).CrossRef M. Wolf, A. Rybakov, R. Hinterding, and A. Feldhoff, Geometry optimization of thermoelectric modules: deviation of optimum power output and conversion efficiency. Entropy 22, 1233 (2020).CrossRef
26.
go back to reference M.-W. Tian, L.W.W. Mihardjo, H. Moria, S. Asaadi, S. Pourhedayat, H. Sadighi Dizaji, and M. Wae-hayee, Economy, energy, exergy and mechanical study of co-axial ring shape configuration of legs as a novel structure for cylindrical thermoelectric generator. Appl. Therm. Eng. 184, 116274 (2021).CrossRef M.-W. Tian, L.W.W. Mihardjo, H. Moria, S. Asaadi, S. Pourhedayat, H. Sadighi Dizaji, and M. Wae-hayee, Economy, energy, exergy and mechanical study of co-axial ring shape configuration of legs as a novel structure for cylindrical thermoelectric generator. Appl. Therm. Eng. 184, 116274 (2021).CrossRef
27.
go back to reference J. Zhao, W. Xu, Z. Kuang, R. Long, Z. Liu, and W. Liu, Segmental material design in thermoelectric devices to boost heat-to-electricity performance. Energy Convers. Manag. 247, 114754 (2021).CrossRef J. Zhao, W. Xu, Z. Kuang, R. Long, Z. Liu, and W. Liu, Segmental material design in thermoelectric devices to boost heat-to-electricity performance. Energy Convers. Manag. 247, 114754 (2021).CrossRef
28.
go back to reference P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Müller, Estimation of thermoelectric generator performance by finite element modeling. J. Electron. Mater. 39, 1934 (2010).CrossRef P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Müller, Estimation of thermoelectric generator performance by finite element modeling. J. Electron. Mater. 39, 1934 (2010).CrossRef
29.
go back to reference J. Li, Q. Xiang, R. Ze, M. Ma, S. Wang, Q. Xie, and Y. Xiang, Thermal and electrical analysis of SiGe thermoelectric unicouple filled with thermal insulation materials. Appl. Therm. Eng. 134, 266 (2018).CrossRef J. Li, Q. Xiang, R. Ze, M. Ma, S. Wang, Q. Xie, and Y. Xiang, Thermal and electrical analysis of SiGe thermoelectric unicouple filled with thermal insulation materials. Appl. Therm. Eng. 134, 266 (2018).CrossRef
30.
go back to reference S. Lv, M. Liu, W. He, X. Li, W. Gong, and S. Shen, Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Convers. Manag. 207, 112516 (2020).CrossRef S. Lv, M. Liu, W. He, X. Li, W. Gong, and S. Shen, Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Convers. Manag. 207, 112516 (2020).CrossRef
31.
go back to reference Z. Miao, X. Meng, and L. Liu, Design a new thermoelectric module with high practicability based on experimental measurement. Energy Convers. Manag. 241, 114320 (2021).CrossRef Z. Miao, X. Meng, and L. Liu, Design a new thermoelectric module with high practicability based on experimental measurement. Energy Convers. Manag. 241, 114320 (2021).CrossRef
32.
go back to reference K. Xie, S. Wu, C. Yang, Y. Ruan, and Y. Hong, A new seafloor hydrothermal power generation device based on waterproof thermoelectric modules. IEEE Access 8, 70762 (2020).CrossRef K. Xie, S. Wu, C. Yang, Y. Ruan, and Y. Hong, A new seafloor hydrothermal power generation device based on waterproof thermoelectric modules. IEEE Access 8, 70762 (2020).CrossRef
33.
go back to reference X. Gai, S. Wu, and C. Yang, Hydrothermal fluid ejector for enhanced heat transfer of a thermoelectric power generator on the seafloor. Sustain. Energy Fuels 5, 4377 (2021).CrossRef X. Gai, S. Wu, and C. Yang, Hydrothermal fluid ejector for enhanced heat transfer of a thermoelectric power generator on the seafloor. Sustain. Energy Fuels 5, 4377 (2021).CrossRef
Metadata
Title
Improving the Efficiency and Pressure Resistance of Inorganic Sealant–Filled Thermoelectric Module
Authors
Shijun Wu
Yongchao Sun
Qingchao Xia
Xiaotao Gai
Canjun Yang
Publication date
06-05-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 7/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10452-4

Other articles of this Issue 7/2023

Journal of Electronic Materials 7/2023 Go to the issue

Topical Collection: International Conference on Organic Electronics 2022

Design and Analysis of CPW-Fed Antenna for Quad-Band Wireless Applications