Skip to main content
Top
Published in: Cellulose 4/2017

24-02-2017 | Original Paper

Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation

Authors: Hannes Orelma, Antti Korpela, Vesa Kunnari, Ali Harlin, Anna Suurnäkki

Published in: Cellulose | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reinforcing of cellulose nanofibril (CNF) films by partial dissolution with N-methylmorpholine-N-oxide (NMMO) was investigated. The method investigated is composed of impregnation of CNF film with liquid solution of NMMO followed by dry heat activation. The heat activation of the impregnated film was carried out using a heated calendering nip, which enabled simultaneous heating and compression. The partial dissolution of cellulose by NMMO caused a significant increase in the transparency of CNF film due to the decrease of film porosity and increased surface smoothness. The dry strength of the reinforced film was increased from 122 up to 195 MPa. Furthermore, the wet strength of the reinforced film was up to 70% greater than the dry strength of pure CNF film. The changes in the fibrillar structure were investigated with topographical imaging (SEM and AFM) and spectroscopically using NMR and FTIR. No significant changes in the fibril structure or cellulose morphology were observed. Moreover, the treated film resisted significant water pressure, highlighting CNF film’s permanent water resistance. The partial dissolution process with NMMO was also capable of reinforcing a CNF composite film with macro scale structural elements (lyocell short-cut fibres). The strategy investigated is a robust and fast method to improve the mechanical properties of fibrillary cellulose films, allowing them utilization in applications where improved water resistance and fully cellulosic character are required properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ahola S, Salmi J, Johansson L-S et al (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282CrossRef Ahola S, Salmi J, Johansson L-S et al (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282CrossRef
go back to reference Duchesne I, Hult E, Molin U et al (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111CrossRef Duchesne I, Hult E, Molin U et al (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111CrossRef
go back to reference Graenacher C (1934) Cellulose solutions. Patent US1943176 Graenacher C (1934) Cellulose solutions. Patent US1943176
go back to reference Hakalahti M, Mautner A, Johansson L-S et al (2016) Direct interfacial modification of nanocellulose films for thermoresponsive membrane templates. ACS Appl Mater Interfaces 8:2923–2927. doi:10.1021/acsami.5b12300 CrossRef Hakalahti M, Mautner A, Johansson L-S et al (2016) Direct interfacial modification of nanocellulose films for thermoresponsive membrane templates. ACS Appl Mater Interfaces 8:2923–2927. doi:10.​1021/​acsami.​5b12300 CrossRef
go back to reference Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.1002/app.26946 CrossRef Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.​1002/​app.​26946 CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
go back to reference Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension. BioResources 3:1419 Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension. BioResources 3:1419
go back to reference Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi:10.1021/bm101510r CrossRef Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836. doi:10.​1021/​bm101510r CrossRef
go back to reference Johnson DL (1969) Strengthening swellable fibrous material with an amine oxide. U.S. 3 pp Johnson DL (1969) Strengthening swellable fibrous material with an amine oxide. U.S. 3 pp
go back to reference Kapanen A, Schettini E, Vox G, Itävaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16:109–122. doi:10.1007/s10924-008-0091-x CrossRef Kapanen A, Schettini E, Vox G, Itävaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16:109–122. doi:10.​1007/​s10924-008-0091-x CrossRef
go back to reference Klemm D (1998) Comprehensive cellulose chemistry. Fundamentals and analytical methods, vol 1. Wiley, WeinheimCrossRef Klemm D (1998) Comprehensive cellulose chemistry. Fundamentals and analytical methods, vol 1. Wiley, WeinheimCrossRef
go back to reference Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466CrossRef
go back to reference Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22. doi:10.1007/BF00812768 Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22. doi:10.​1007/​BF00812768
go back to reference Moon R, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon R, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfac 5:4640–4647. doi:10.1021/am401046x CrossRef Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfac 5:4640–4647. doi:10.​1021/​am401046x CrossRef
go back to reference Paakko M, Vapaavuori J, Silvennoinen R et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi:10.1039/B810371B CrossRef Paakko M, Vapaavuori J, Silvennoinen R et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi:10.​1039/​B810371B CrossRef
go back to reference Peresin MS, Vartiainen J, Kunnari V, et al (2012) Large-scale nanofibrillated cellulose film: an overview on its production, properties, and potential applications. In: Book of abstracts international conference of pulping, papermaking and biotechnology Peresin MS, Vartiainen J, Kunnari V, et al (2012) Large-scale nanofibrillated cellulose film: an overview on its production, properties, and potential applications. In: Book of abstracts international conference of pulping, papermaking and biotechnology
go back to reference Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progr Polym Sci 26:1763–1837CrossRef Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Progr Polym Sci 26:1763–1837CrossRef
go back to reference Schasfoort RBM, Tudos AJ, Gedig ET (2008) Handbook of surface plasmon resonance. The Royal Society of Chemistry, CambridgeCrossRef Schasfoort RBM, Tudos AJ, Gedig ET (2008) Handbook of surface plasmon resonance. The Royal Society of Chemistry, CambridgeCrossRef
go back to reference Spoljaric S, Salminen A, Luong N, Seppälä J (2013) Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose 20:2991–3005. doi:10.1007/s10570-013-0061-x CrossRef Spoljaric S, Salminen A, Luong N, Seppälä J (2013) Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose 20:2991–3005. doi:10.​1007/​s10570-013-0061-x CrossRef
go back to reference Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef
go back to reference Tammelin T, Hippi U, Salminen A (2013) Method for the preparation of nanofibrillated cellulose (NFC) films on supports. PCT Int Appl 13 pp, Chemical Indexing Equivalent to 160:342652 Tammelin T, Hippi U, Salminen A (2013) Method for the preparation of nanofibrillated cellulose (NFC) films on supports. PCT Int Appl 13 pp, Chemical Indexing Equivalent to 160:342652
go back to reference Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17(8):1465–1472CrossRef Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17(8):1465–1472CrossRef
go back to reference Walther A, Timonen JVI, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi:10.1002/adma.201100580 CrossRef Walther A, Timonen JVI, Díez I et al (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928. doi:10.​1002/​adma.​201100580 CrossRef
go back to reference Wachsmann U, Diamantoglou M (1997) Potential des NMMO-Verfahrens für Fasern und Membranen. Das Pap 51:660–665 Wachsmann U, Diamantoglou M (1997) Potential des NMMO-Verfahrens für Fasern und Membranen. Das Pap 51:660–665
Metadata
Title
Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation
Authors
Hannes Orelma
Antti Korpela
Vesa Kunnari
Ali Harlin
Anna Suurnäkki
Publication date
24-02-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1229-6

Other articles of this Issue 4/2017

Cellulose 4/2017 Go to the issue