Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

16-10-2020

Improving the performances of CsPbBr3 solar cells fabricated in ambient condition

Authors: Beilei Yuan, Ning Li, Jialiang Liu, Fan Xu, Chen Li, Fangying Juan, Huanqin Yu, Cuncheng Li, Bingqiang Cao

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inorganic perovskite cesium lead bromide (CsPbBr3) gets extensive attention due to its superb stability and moisture-tolerance feature. Here, solution-processed CsPbBr3 perovskite films and their based solar cells were fabricated in ambient condition. The effect of post-annealing on the properties of the CsPbBr3 film grown and the photoelectric performance of perovskite solar cells (PSCs) have been systematically investigated, which enhances the device power conversion efficiency (PCE) from 2.67 to 5.20%. Moreover, by doping mesoporous TiO2 (m-TiO2) with reduced graphene oxide (RGO), the PCE of solar cells attained an apparent enhancement and finally improved to 7.08%. Not only high-quality CsPbBr3 perovskite films but also high-performance mesoporous PSCs were obtained by film post-annealing and electron transport layer (ETL) doping, which were all fabricated in ambient conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashral, M. Grätzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015) W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashral, M. Grätzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)
2.
go back to reference N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015) N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)
3.
go back to reference M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013) M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)
4.
go back to reference Q.D. Tai, K.C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12, 2375–2405 (2019) Q.D. Tai, K.C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12, 2375–2405 (2019)
5.
go back to reference Q. Chen, H.P. Zhou, Z.R. Hong, S. Luo, H.S. Duan, H.H. Wang, Y.S. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014) Q. Chen, H.P. Zhou, Z.R. Hong, S. Luo, H.S. Duan, H.H. Wang, Y.S. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014)
6.
go back to reference J. Liang, C.X. Wang, Y.R. Wang, Z.R. Xu, Z.P. Lu, Y. Ma, H.F. Zhu, Y. Hu, C.C. Xiao, X. Yi, G.Y. Zhu, H.L. Lv, L.B. Ma, T. Chen, Z.X. Tie, Z. Jin, J. Liu, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016) J. Liang, C.X. Wang, Y.R. Wang, Z.R. Xu, Z.P. Lu, Y. Ma, H.F. Zhu, Y. Hu, C.C. Xiao, X. Yi, G.Y. Zhu, H.L. Lv, L.B. Ma, T. Chen, Z.X. Tie, Z. Jin, J. Liu, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138, 15829–15832 (2016)
7.
go back to reference W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015) W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)
8.
go back to reference J.L. Duan, Y.Y. Zhao, B.L. He, Q.W. Tang, Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber. Small 14, 1704443 (2018) J.L. Duan, Y.Y. Zhao, B.L. He, Q.W. Tang, Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber. Small 14, 1704443 (2018)
9.
go back to reference S. Karuppuchamy, G. Murugadoss, K. Ramachandran, V. Saxena, R. Thangamuthu, Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci-Mater. El. 29, 8847–8853 (2018) S. Karuppuchamy, G. Murugadoss, K. Ramachandran, V. Saxena, R. Thangamuthu, Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci-Mater. El. 29, 8847–8853 (2018)
10.
go back to reference J. Lee, S. Kim, S. Bae, D. Lee, O. Lin, Y. Yang, N. Park, The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano Lett. 17, 11234–11243 (2017) J. Lee, S. Kim, S. Bae, D. Lee, O. Lin, Y. Yang, N. Park, The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano Lett. 17, 11234–11243 (2017)
11.
go back to reference J. Liang, J. Liu, Z. Jin, All-inorganic halide perovskites for pptoelectronics: progress and prospects. Sol. RRL 1, 1700086 (2017) J. Liang, J. Liu, Z. Jin, All-inorganic halide perovskites for pptoelectronics: progress and prospects. Sol. RRL 1, 1700086 (2017)
12.
go back to reference G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013) G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)
13.
go back to reference L.L. Qiu, Z.S. Zhuang, S.L. Yang, W.S. Chen, L.X. Song, M.L. Ding, G.B. Xia, P.F. Du, J. Xiong, Fabrication of high efficiency perovskite solar cells based on mesoporous TiO2 nanofibrous film under high humidity conditions. Mater. Res. Bull. 106, 439–445 (2018) L.L. Qiu, Z.S. Zhuang, S.L. Yang, W.S. Chen, L.X. Song, M.L. Ding, G.B. Xia, P.F. Du, J. Xiong, Fabrication of high efficiency perovskite solar cells based on mesoporous TiO2 nanofibrous film under high humidity conditions. Mater. Res. Bull. 106, 439–445 (2018)
14.
go back to reference H.S. Kim, J.Y. Seo, N.G. Park, ChemInform abstract: material and device stability in perovskite solar cells. Chemsuschem 9, 2528–2540 (2016) H.S. Kim, J.Y. Seo, N.G. Park, ChemInform abstract: material and device stability in perovskite solar cells. Chemsuschem 9, 2528–2540 (2016)
15.
go back to reference Y. Yang, J. You, Make perovskite solar cells stable. Nature 544, 155–156 (2017) Y. Yang, J. You, Make perovskite solar cells stable. Nature 544, 155–156 (2017)
16.
go back to reference J. Lei, F. Zhao, H.X. Wang, J. Li, J.X. Jing, X. Wu, R.R. Cao, Z. Yang, S.Z. Liu, Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Sol. Energy. Mater. Sol. C 187, 1–8 (2018) J. Lei, F. Zhao, H.X. Wang, J. Li, J.X. Jing, X. Wu, R.R. Cao, Z. Yang, S.Z. Liu, Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Sol. Energy. Mater. Sol. C 187, 1–8 (2018)
17.
go back to reference H.N. Chen, S.S. Xiang, W.P. Li, H.C. Liu, L.Q. Zhu, S.H. Yang, Inorganic perovskite solar cells: a rapidly growing field. Sol. RRL 2, 1700188 (2018) H.N. Chen, S.S. Xiang, W.P. Li, H.C. Liu, L.Q. Zhu, S.H. Yang, Inorganic perovskite solar cells: a rapidly growing field. Sol. RRL 2, 1700188 (2018)
18.
go back to reference Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, J.S. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015) Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, J.S. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)
19.
go back to reference L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova, K.J. Stevenson, P.A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2016) L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova, K.J. Stevenson, P.A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 8, 67–72 (2016)
20.
go back to reference W. Ahmad, J. Khan, G. Niu, J. Tang, Inorganic CsPbI3 perovskitep-based solar cells: a choice for a tandem device. Sol. RRL 1, 1–9 (2017) W. Ahmad, J. Khan, G. Niu, J. Tang, Inorganic CsPbI3 perovskitep-based solar cells: a choice for a tandem device. Sol. RRL 1, 1–9 (2017)
21.
go back to reference P. Cottingham, R. Brutchey, On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 52, 5246–5249 (2016) P. Cottingham, R. Brutchey, On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 52, 5246–5249 (2016)
22.
go back to reference G.E. Eperon, G.M. Paterno, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Caciallibc, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015) G.E. Eperon, G.M. Paterno, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Caciallibc, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015)
23.
go back to reference R. Beal, D. Slotcavage, T. Leijtens, A. Bowring, R. Belisle, W. Nguyen, G. Burkhard, E. Hoke, M. McGehee, Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016) R. Beal, D. Slotcavage, T. Leijtens, A. Bowring, R. Belisle, W. Nguyen, G. Burkhard, E. Hoke, M. McGehee, Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016)
24.
go back to reference J. Liang, Z.H. Liu, L.B. Qiu, Z. Hawash, L.Q. Meng, Z.F. Wu, Y. Jiang, L.K. Ono, Y.B. Qi, Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy. Mater. 8, 1800504 (2018) J. Liang, Z.H. Liu, L.B. Qiu, Z. Hawash, L.Q. Meng, Z.F. Wu, Y. Jiang, L.K. Ono, Y.B. Qi, Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy. Mater. 8, 1800504 (2018)
25.
go back to reference Y.N. Li, J.L. Duan, H.W. Yuan, Y.Y. Zhao, B.L. He, Q. Tang, All-inorganic halide perovskites for optoelectronics: progress and prospects. Sol. RRL 2, 1800164 (2018) Y.N. Li, J.L. Duan, H.W. Yuan, Y.Y. Zhao, B.L. He, Q. Tang, All-inorganic halide perovskites for optoelectronics: progress and prospects. Sol. RRL 2, 1800164 (2018)
26.
go back to reference Q.S. Zeng, X.Y. Zhang, X.L. Feng, S.Y. Lu, Z.L. Chen, X. Yong, S.A.T. Redfern, H.T. Wei, H.Y. Wang, H.Z. Shen, W. Zhang, W. Zheng, H.T. Zhang, J.S. Tse, B. Yang, Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018) Q.S. Zeng, X.Y. Zhang, X.L. Feng, S.Y. Lu, Z.L. Chen, X. Yong, S.A.T. Redfern, H.T. Wei, H.Y. Wang, H.Z. Shen, W. Zhang, W. Zheng, H.T. Zhang, J.S. Tse, B. Yang, Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018)
27.
go back to reference W.C. Xiang, Z.W. Wang, D.J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J.T. Zhou, G. Dietler, M. Grätzel, A. Hagfeldt, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019) W.C. Xiang, Z.W. Wang, D.J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J.T. Zhou, G. Dietler, M. Grätzel, A. Hagfeldt, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019)
28.
go back to reference C. Liu, W.Z. Li, C.L. Zhang, Y.P. Ma, J.D. Fan, Y.H. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018) C. Liu, W.Z. Li, C.L. Zhang, Y.P. Ma, J.D. Fan, Y.H. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140, 3825–3828 (2018)
29.
go back to reference H.R. Wang, X.Y. Zhang, Q.Q. Wu, F. Cao, D.W. Yang, Y.Q. Shang, Z.J. Ning, W. Zhang, W.T. Zheng, Y.F. Yan, S.V. Kershaw, L.J. Zhang, A.L. Rogach, X.Y. Yang, Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019) H.R. Wang, X.Y. Zhang, Q.Q. Wu, F. Cao, D.W. Yang, Y.Q. Shang, Z.J. Ning, W. Zhang, W.T. Zheng, Y.F. Yan, S.V. Kershaw, L.J. Zhang, A.L. Rogach, X.Y. Yang, Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019)
30.
go back to reference K.B. Lin, J. Xing, L.N. Quan, F.P.G. Arquer, X.W. Gong, J.X. Lu, L.Q. Xie, W.J. Zhao, D. Zhang, C.Z. Yan, W.Q. Li, X.Y. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q.H. Xiong, Z.H. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245–248 (2018) K.B. Lin, J. Xing, L.N. Quan, F.P.G. Arquer, X.W. Gong, J.X. Lu, L.Q. Xie, W.J. Zhao, D. Zhang, C.Z. Yan, W.Q. Li, X.Y. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q.H. Xiong, Z.H. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245–248 (2018)
31.
go back to reference J. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015) J. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015)
32.
go back to reference M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016) M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016)
33.
go back to reference W.J. Chen, J.W. Zhang, G.Y. Xu, R.M. Xue, Y.W. Li, Y.H. Zhou, J.H. Hou, Y.F. Li, A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018) W.J. Chen, J.W. Zhang, G.Y. Xu, R.M. Xue, Y.W. Li, Y.H. Zhou, J.H. Hou, Y.F. Li, A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018)
34.
go back to reference P.P. Teng, X.P. Han, J.W. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, Elegant face-down liquid-space-restricted deposition of CsPbBr3 films for efficient carbon-based all-inorganic planar perovskite solar cells. ACS Appl. Mater. Interfaces 10, 9541–9546 (2018) P.P. Teng, X.P. Han, J.W. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, Elegant face-down liquid-space-restricted deposition of CsPbBr3 films for efficient carbon-based all-inorganic planar perovskite solar cells. ACS Appl. Mater. Interfaces 10, 9541–9546 (2018)
35.
go back to reference J.M. Liu, L.Q. Zhu, S.S. Xiang, Y. Wei, M.L. Xie, H.C. Liu, W.P. Li, H.N. Chen, Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustain. Energy Fuels 3, 184–194 (2019) J.M. Liu, L.Q. Zhu, S.S. Xiang, Y. Wei, M.L. Xie, H.C. Liu, W.P. Li, H.N. Chen, Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells. Sustain. Energy Fuels 3, 184–194 (2019)
36.
go back to reference Z.Y. Liu, B. Sun, X.Y. Liu, J.H. Han, H.B. Ye, T.L. Shi, Z.R. Tang, G.L. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018) Z.Y. Liu, B. Sun, X.Y. Liu, J.H. Han, H.B. Ye, T.L. Shi, Z.R. Tang, G.L. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018)
37.
go back to reference T.T. Shi, W.J. Yin, F. Hong, K. Zhu, Y. Yan, Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015) T.T. Shi, W.J. Yin, F. Hong, K. Zhu, Y. Yan, Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015)
38.
go back to reference J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017) J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017)
39.
go back to reference G.S. Han, Y.H. Song, Y.U. Jin, J.W. Lee, N.G. Park, B.K. Kang, J.W. Lee, I.S. Cho, D.H. Yoon, H.S. Jung, Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS. Appl. Mater. Inter. 42, 23521–23526 (2015) G.S. Han, Y.H. Song, Y.U. Jin, J.W. Lee, N.G. Park, B.K. Kang, J.W. Lee, I.S. Cho, D.H. Yoon, H.S. Jung, Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS. Appl. Mater. Inter. 42, 23521–23526 (2015)
40.
go back to reference D.H. Kim, G.S. Han, W.M. Seong, J.W. Lee, B.J. Kim, N.G. Park, K.S. Hong, S. Lee, H.S. Jung, Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells. Chemsuschem 8, 2392–2398 (2015) D.H. Kim, G.S. Han, W.M. Seong, J.W. Lee, B.J. Kim, N.G. Park, K.S. Hong, S. Lee, H.S. Jung, Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells. Chemsuschem 8, 2392–2398 (2015)
41.
go back to reference H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013) H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)
42.
go back to reference S.S. Mali, J.V. Patil, H. Kim, C.K. Hong, Gallium cationic incorporated compact TiO2 as an efficient electron-transporting layer for stable perovskite solar cells. Matter 1, 452–464 (2019) S.S. Mali, J.V. Patil, H. Kim, C.K. Hong, Gallium cationic incorporated compact TiO2 as an efficient electron-transporting layer for stable perovskite solar cells. Matter 1, 452–464 (2019)
43.
go back to reference K.T. Cho, G. Grancini, Y. Lee, D. Konios, S. Paek, E. Kymakis, M.K. Nazeeruddin, Beneficial role of reduced graphene oxide for electron extraction in highly efficient perovskite solar cells. Chemsuschem 9, 30400–33044 (2016) K.T. Cho, G. Grancini, Y. Lee, D. Konios, S. Paek, E. Kymakis, M.K. Nazeeruddin, Beneficial role of reduced graphene oxide for electron extraction in highly efficient perovskite solar cells. Chemsuschem 9, 30400–33044 (2016)
44.
go back to reference J.Q. Liu, Z.Y. Yin, X.H. Cao, F. Zhao, A. Ling, L.H. Xie, Q.L. Fan, F. Boey, H. Zhang, W. Huang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 25, 233 (2013) J.Q. Liu, Z.Y. Yin, X.H. Cao, F. Zhao, A. Ling, L.H. Xie, Q.L. Fan, F. Boey, H. Zhang, W. Huang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 25, 233 (2013)
45.
go back to reference Q.Y. He, S.X. Wu, S. Gao, X.H. Cao, Z.Y. Yin, H. Li, P. Chen, H. Zhang, Graphene as transparent front contact for dye sensitized solar cells. Nano Lett. 12, 3472 (2012) Q.Y. He, S.X. Wu, S. Gao, X.H. Cao, Z.Y. Yin, H. Li, P. Chen, H. Zhang, Graphene as transparent front contact for dye sensitized solar cells. Nano Lett. 12, 3472 (2012)
46.
go back to reference N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidan, L. Dubois, Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities. J. Mater. Chem. A 1, 2789–2794 (2013) N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidan, L. Dubois, Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities. J. Mater. Chem. A 1, 2789–2794 (2013)
47.
go back to reference H.F. Ji, Z.F. Shi, X.G. Sun, Y. Ling, S. Li, L.Z. Lei, D. Wu, T.T. Xu, X.J. Li, G.T. Du, Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications. ACS Appl. Mater. Interfaces 9, 42893–42904 (2017) H.F. Ji, Z.F. Shi, X.G. Sun, Y. Ling, S. Li, L.Z. Lei, D. Wu, T.T. Xu, X.J. Li, G.T. Du, Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications. ACS Appl. Mater. Interfaces 9, 42893–42904 (2017)
48.
go back to reference L.R. Pederson, Two-dimensional chemical-state plot for lead using XPS. J. Electron Spectrosc. Relat. Phenom. 28, 203–239 (1982) L.R. Pederson, Two-dimensional chemical-state plot for lead using XPS. J. Electron Spectrosc. Relat. Phenom. 28, 203–239 (1982)
49.
go back to reference V.I. Nefedov, X-ray photoelectron spectra of halogens in coordination compounds. J. Electron Spectrosc. Relat. Phenom. 12, 459–476 (1977) V.I. Nefedov, X-ray photoelectron spectra of halogens in coordination compounds. J. Electron Spectrosc. Relat. Phenom. 12, 459–476 (1977)
50.
go back to reference D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2017) D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2017)
51.
go back to reference C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014) C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)
52.
go back to reference P. Piatkowski, B. Cohen, F.J. Ramos, M. Di Nunzio, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, A. Douhal, Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Phys. Chem. Chem. Phys. 17, 14674–14684 (2015) P. Piatkowski, B. Cohen, F.J. Ramos, M. Di Nunzio, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, A. Douhal, Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Phys. Chem. Chem. Phys. 17, 14674–14684 (2015)
53.
go back to reference S. Shao, M. Abdu-Aguye, T.S. Sherkar, H.H. Fang, S. Adjokatse, G.T. Brink, B.J. Kooi, L.J.A. Koster, M.A. Loi, The effect of the microstructure o trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells. Adv. Funct. Mater. 26, 8094–8102 (2016) S. Shao, M. Abdu-Aguye, T.S. Sherkar, H.H. Fang, S. Adjokatse, G.T. Brink, B.J. Kooi, L.J.A. Koster, M.A. Loi, The effect of the microstructure o trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells. Adv. Funct. Mater. 26, 8094–8102 (2016)
54.
go back to reference J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015) J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)
55.
go back to reference M. Scholz, O. Flender, K. Qum, T. Lenzer, Pronounced exciton dynamics in the vacancy-ordered bismuth halide perovskite (CH3NH3)3Bi2I9 observed by ultrafast UV-vis-NIR transient absorption spectroscopy. J. Phys. Chem. C 22, 12110–12116 (2017) M. Scholz, O. Flender, K. Qum, T. Lenzer, Pronounced exciton dynamics in the vacancy-ordered bismuth halide perovskite (CH3NH3)3Bi2I9 observed by ultrafast UV-vis-NIR transient absorption spectroscopy. J. Phys. Chem. C 22, 12110–12116 (2017)
56.
go back to reference B. Yang, J.S. Chen, S.Q. Yang, F. Hong, L. Sun, P.G. Han, T. Pullerits, W.Q. Deng, K.L. Han, Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. 19, 5359–5363 (2018) B. Yang, J.S. Chen, S.Q. Yang, F. Hong, L. Sun, P.G. Han, T. Pullerits, W.Q. Deng, K.L. Han, Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. 19, 5359–5363 (2018)
57.
go back to reference T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978) T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)
58.
go back to reference H.G. Yu, P. Xiao, J. Tian, F.Z. Wang, J.G. Yu, Phenylamine-functionalized rGO/TiO2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Appl. Mater. Interfaces 8, 29470–29477 (2016) H.G. Yu, P. Xiao, J. Tian, F.Z. Wang, J.G. Yu, Phenylamine-functionalized rGO/TiO2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Appl. Mater. Interfaces 8, 29470–29477 (2016)
59.
go back to reference J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012) J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)
Metadata
Title
Improving the performances of CsPbBr3 solar cells fabricated in ambient condition
Authors
Beilei Yuan
Ning Li
Jialiang Liu
Fan Xu
Chen Li
Fangying Juan
Huanqin Yu
Cuncheng Li
Bingqiang Cao
Publication date
16-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04627-6

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue