Skip to main content
Top
Published in: Journal of Electronic Materials 3/2024

17-12-2023 | Topical Collection: Electronic Packaging and Interconnections 2023

In Situ Electrical Characterization of Transient Liquid-Phase Sintered Alloys

Authors: G. Nave, P. McCluskey

Published in: Journal of Electronic Materials | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growing demands of electrification are driving research into new electronic materials. These electronic materials must have high electrical conductivity, withstand harsh environments and high temperatures, and demonstrate reliable solutions as part of complete electronic packaging solutions. This study focuses on characterizing the manufacturing process of transient liquid-phase sintering (TLPS) of alloys in a paste form as candidates for high-temperature and high-power electronic materials. The main objective of this paper is to investigate the factors and decouple the multiple cross effects occurring during the first stage of TLPS processing in order to improve the understanding of material evolution. We conduct in situ electrical resistivity tests to directly measure material properties and analyze the dynamics and different stages of the material's evolution. We explore various factors, including alloying elements, organic binders, and heating rates, to understand their effects on the formation of electrical performance in electronic materials. More specifically, we will examine the performance of Ag-In and Ag-Sn TLPS paste systems. Additionally, we examine the packing density and changes in cross section using imaging techniques and image processing to gain insights into the early formation of the material's structural backbone. This investigation not only sheds light on the material's behavior but also has implications for robust additive manufacturing (AM) applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Luderer, S. Madeddu, L. Merfort, F. Ueckerdt, M. Pehl, R. Pietzcker, M. Rottoli, F. Schreyer, N. Bauer, L. Baumstark, C. Bertram, A. Dirnaichner, F. Humpenöder, A. Levesque, A. Popp, R. Rodrigues, J. Strefler, and E. Kriegler, Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32 (2022).ADSCrossRef G. Luderer, S. Madeddu, L. Merfort, F. Ueckerdt, M. Pehl, R. Pietzcker, M. Rottoli, F. Schreyer, N. Bauer, L. Baumstark, C. Bertram, A. Dirnaichner, F. Humpenöder, A. Levesque, A. Popp, R. Rodrigues, J. Strefler, and E. Kriegler, Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32 (2022).ADSCrossRef
2.
go back to reference K. Samuel, Moore, another step toward the end of Moore’s law. IEEE Spectr. 56, 9 (2019).CrossRef K. Samuel, Moore, another step toward the end of Moore’s law. IEEE Spectr. 56, 9 (2019).CrossRef
3.
go back to reference C. Liu, Advanced Pb-free Interconnect Materials and Manufacture Processes to Enable High-Temperature Electronics Packaging (Loughborough: Loughborough University, 2022). C. Liu, Advanced Pb-free Interconnect Materials and Manufacture Processes to Enable High-Temperature Electronics Packaging (Loughborough: Loughborough University, 2022).
4.
go back to reference L. Dorn-Gomba, J. Ramoul, J. Reimers, and A. Emadi, Power electronic converters in electric aircraft: current status, challenges, and emerging technologies. IEEE Trans. Transp. Electrif. 6, 1648 (2020).CrossRef L. Dorn-Gomba, J. Ramoul, J. Reimers, and A. Emadi, Power electronic converters in electric aircraft: current status, challenges, and emerging technologies. IEEE Trans. Transp. Electrif. 6, 1648 (2020).CrossRef
5.
go back to reference H. Wang, M. Liserre, and F. Blaabjerg, Toward reliable power electronics: challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 7, 17 (2013).CrossRef H. Wang, M. Liserre, and F. Blaabjerg, Toward reliable power electronics: challenges, design tools, and opportunities. IEEE Ind. Electron. Mag. 7, 17 (2013).CrossRef
6.
go back to reference A. Hassan, Y. Savaria, and M. Sawan, Electronics and packaging intended for emerging harsh environment applications: a review. IEEE Trans. Very Large Scale Integr. Syst. 26, 2085 (2018).CrossRef A. Hassan, Y. Savaria, and M. Sawan, Electronics and packaging intended for emerging harsh environment applications: a review. IEEE Trans. Very Large Scale Integr. Syst. 26, 2085 (2018).CrossRef
7.
go back to reference H.W.V. Goodship, A.L.N. Stevels, R. Kuehr, R. Stewart, P. Leroy, H.W. Böni, J. Huisman, M. Goosey, W.L. Ijomah, M. Danis, A. van Schaik, M.A. Reuter, K. Makenji, M. Savage, M.P. Luda, and A. Tu, Waste Electrical and Electronic Equipment (WEEE) Handbook, 2nd ed., (Sawston: Woodhead Publishing, 2019). H.W.V. Goodship, A.L.N. Stevels, R. Kuehr, R. Stewart, P. Leroy, H.W. Böni, J. Huisman, M. Goosey, W.L. Ijomah, M. Danis, A. van Schaik, M.A. Reuter, K. Makenji, M. Savage, M.P. Luda, and A. Tu, Waste Electrical and Electronic Equipment (WEEE) Handbook, 2nd ed., (Sawston: Woodhead Publishing, 2019).
8.
go back to reference H. Zhang, J. Minter, and N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 48, 201 (2019).ADSCrossRef H. Zhang, J. Minter, and N.C. Lee, A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 48, 201 (2019).ADSCrossRef
9.
go back to reference S. Zhong, L. Zhang, M. Li, W. Long, and F. Wang, Development of lead-free interconnection materials in electronic industry during the past decades: structure and properties. Mater. Des. 215, 110439 (2022).CrossRef S. Zhong, L. Zhang, M. Li, W. Long, and F. Wang, Development of lead-free interconnection materials in electronic industry during the past decades: structure and properties. Mater. Des. 215, 110439 (2022).CrossRef
10.
go back to reference Y. Chen, C. Liu, Z. Zhou, and C. Liu, Transient liquid phase bonding with Ga-based alloys for electronics interconnections. J. Manuf. Process. 84, 1310 (2022).CrossRef Y. Chen, C. Liu, Z. Zhou, and C. Liu, Transient liquid phase bonding with Ga-based alloys for electronics interconnections. J. Manuf. Process. 84, 1310 (2022).CrossRef
11.
go back to reference T. Islam and A. Sharif, Transient liquid phase bonding, Harsh Environment Electronics: Interconnect Materials and Performance Assessment. (New York: Wiley, 2019), pp. 263–292.CrossRef T. Islam and A. Sharif, Transient liquid phase bonding, Harsh Environment Electronics: Interconnect Materials and Performance Assessment. (New York: Wiley, 2019), pp. 263–292.CrossRef
12.
go back to reference R. Mahayri, S. Mercone, F. Giovannelli, K.L. Tan, J.M. Morelle, N. Jouini, and F. Schoenstein, Microstructure effects on thermal and electrical conductivities in the intermetallic compound Ag3Sn-based materials, sintered by SPS in view of die-attachment applications. Eur. Phys. J. Spec. Top. 231, 4173 (2022).CrossRef R. Mahayri, S. Mercone, F. Giovannelli, K.L. Tan, J.M. Morelle, N. Jouini, and F. Schoenstein, Microstructure effects on thermal and electrical conductivities in the intermetallic compound Ag3Sn-based materials, sintered by SPS in view of die-attachment applications. Eur. Phys. J. Spec. Top. 231, 4173 (2022).CrossRef
13.
go back to reference B. Rheingans, L.P.H. Jeurgens, and J. Janczak-Rusch, Fast and reliable Ag–Sn transient liquid phase bonding by combining rapid heating with low-power ultrasound. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 53, 2195 (2022).ADSCrossRef B. Rheingans, L.P.H. Jeurgens, and J. Janczak-Rusch, Fast and reliable Ag–Sn transient liquid phase bonding by combining rapid heating with low-power ultrasound. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 53, 2195 (2022).ADSCrossRef
14.
go back to reference C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low temperature bonding by infiltrating Sn35Ag solder into porous Ag sheet for high temperature die attachment in power device packaging. Sci. Rep. 8, 2 (2018).ADSCrossRef C. Hang, J. He, Z. Zhang, H. Chen, and M. Li, Low temperature bonding by infiltrating Sn35Ag solder into porous Ag sheet for high temperature die attachment in power device packaging. Sci. Rep. 8, 2 (2018).ADSCrossRef
15.
go back to reference F. Yu, H. Liu, C. Hang, H. Chen, and M. Li, Rapid formation of full intermetallic bondlines for die attachment in high-temperature power devices based on micro-sized Sn-coated Ag particles. JOM 71, 3049 (2019).CrossRef F. Yu, H. Liu, C. Hang, H. Chen, and M. Li, Rapid formation of full intermetallic bondlines for die attachment in high-temperature power devices based on micro-sized Sn-coated Ag particles. JOM 71, 3049 (2019).CrossRef
16.
go back to reference I. Karakaya and W.T. Thompson, The Ag-Sn (silver-tin) system. Bull. Alloy Phase Diagr. 8, 340 (1987).CrossRef I. Karakaya and W.T. Thompson, The Ag-Sn (silver-tin) system. Bull. Alloy Phase Diagr. 8, 340 (1987).CrossRef
17.
go back to reference H. Okamoto, Ag-In (silver-indium). J. Phase Equilib. Diffus. 27, 536 (2006).CrossRef H. Okamoto, Ag-In (silver-indium). J. Phase Equilib. Diffus. 27, 536 (2006).CrossRef
18.
go back to reference Y. Huo and C.C. Lee, The growth and stress versus strain characterization of the silver solid solution phase with indium. J. Alloys Compd. 661, 372 (2016).CrossRef Y. Huo and C.C. Lee, The growth and stress versus strain characterization of the silver solid solution phase with indium. J. Alloys Compd. 661, 372 (2016).CrossRef
19.
go back to reference C.H. Tsai, W.C. Huang, L.M. Chew, W. Schmitt, J. Li, H. Nishikawa, and C.R. Kao, Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment. J. Mater. Res. Technol. 15, 4541 (2021).CrossRef C.H. Tsai, W.C. Huang, L.M. Chew, W. Schmitt, J. Li, H. Nishikawa, and C.R. Kao, Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment. J. Mater. Res. Technol. 15, 4541 (2021).CrossRef
20.
go back to reference Y. Huo, S.W. Fu, Y.L. Chen, and C.C. Lee, A reaction study of sulfur vapor with silver and silver–indium solid solution as a tarnishing test method. J. Mater. Sci. Mater. Electron. 27, 10382 (2016).CrossRef Y. Huo, S.W. Fu, Y.L. Chen, and C.C. Lee, A reaction study of sulfur vapor with silver and silver–indium solid solution as a tarnishing test method. J. Mater. Sci. Mater. Electron. 27, 10382 (2016).CrossRef
21.
go back to reference C.H. Tsai, W.C. Huang, and C.R. Kao, Development of Ag-In alloy pastes by mechanical alloying for die attachment of high-power semiconductor devices. Materials (Basel) 15, 1 (2022).CrossRef C.H. Tsai, W.C. Huang, and C.R. Kao, Development of Ag-In alloy pastes by mechanical alloying for die attachment of high-power semiconductor devices. Materials (Basel) 15, 1 (2022).CrossRef
22.
go back to reference K.N. Subramanian, Lead-free electronic solders, Lead-Free Electronic Solders. (Cham: Springer, 2007).CrossRef K.N. Subramanian, Lead-free electronic solders, Lead-Free Electronic Solders. (Cham: Springer, 2007).CrossRef
23.
go back to reference S. Wakeel, A.S.M.A. Haseeb, M.A. Afifi, S. Bingol, and K.L. Hoon, Constituents and performance of no-clean flux for electronic solder. Microelectron. Reliab. 123, 114177 (2021).CrossRef S. Wakeel, A.S.M.A. Haseeb, M.A. Afifi, S. Bingol, and K.L. Hoon, Constituents and performance of no-clean flux for electronic solder. Microelectron. Reliab. 123, 114177 (2021).CrossRef
24.
go back to reference G.-M. Choi, J. Ki-Seok, C. Kwang-Seong, J. Joo, H.-G. Yun, C. Lee, and E. Yong-Sung, Thermochemical mechanism of the epoxy-glutamic acid reaction with Sn-30Ag-05Cu solder powder for electrical joining. Polymers (Basel) 13, 957 (2021).PubMedPubMedCentralCrossRef G.-M. Choi, J. Ki-Seok, C. Kwang-Seong, J. Joo, H.-G. Yun, C. Lee, and E. Yong-Sung, Thermochemical mechanism of the epoxy-glutamic acid reaction with Sn-30Ag-05Cu solder powder for electrical joining. Polymers (Basel) 13, 957 (2021).PubMedPubMedCentralCrossRef
25.
go back to reference P.O. Quintero, Development of a shifting melting point Ag In paste via transient liquid phase sintering for high temperature environmnets, Development of a Shifting Melting Point Ag-In Paste via Transient Liquid Phase Sintering for High Temperature Environmnets. (College Park: University of Maryland at College Park, 2008). P.O. Quintero, Development of a shifting melting point Ag In paste via transient liquid phase sintering for high temperature environmnets, Development of a Shifting Melting Point Ag-In Paste via Transient Liquid Phase Sintering for High Temperature Environmnets. (College Park: University of Maryland at College Park, 2008).
26.
go back to reference G. Nave, C. Buxbaum, and F.P. McCluskey, Reliable additive manufacturing using transient liquid phase sintering. Proceedings of ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK (2021) G. Nave, C. Buxbaum, and F.P. McCluskey, Reliable additive manufacturing using transient liquid phase sintering. Proceedings of ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK (2021)
27.
go back to reference M. Schneider, J. Maurath, S.B. Fischer, M. Weiß, N. Willenbacher, and E. Koos, Suppressing crack formation in particulate systems by utilizing capillary forces. ACS Appl. Mater. Interfaces 9, 11095 (2017).PubMedPubMedCentralCrossRef M. Schneider, J. Maurath, S.B. Fischer, M. Weiß, N. Willenbacher, and E. Koos, Suppressing crack formation in particulate systems by utilizing capillary forces. ACS Appl. Mater. Interfaces 9, 11095 (2017).PubMedPubMedCentralCrossRef
28.
go back to reference D. Bušek, K. Dušek, D. Růžička, M. Plaček, P. MacH, J. Urbánek, and J. Starý, Flux effect on void quantity and size in soldered joints. Microelectron. Reliab. 60, 135 (2016).CrossRef D. Bušek, K. Dušek, D. Růžička, M. Plaček, P. MacH, J. Urbánek, and J. Starý, Flux effect on void quantity and size in soldered joints. Microelectron. Reliab. 60, 135 (2016).CrossRef
29.
go back to reference A. Syed-Khaja and J. Franke, Investigations on advanced soldering mechanisms for transient liquid phase soldering (TLPS) in power electronics. Proceedings 5th Electronics System Conference. ESTC (2014) A. Syed-Khaja and J. Franke, Investigations on advanced soldering mechanisms for transient liquid phase soldering (TLPS) in power electronics. Proceedings 5th Electronics System Conference. ESTC (2014)
30.
go back to reference H. Schoeller, K. Jongman, P. Seungbae, and C. Junghyun, Thermodynamics and kinetics of oxidation of pure indium solders. Thermodyn. Kinet. Oxid. Pure Indium Solders 968, 1 (2007). H. Schoeller, K. Jongman, P. Seungbae, and C. Junghyun, Thermodynamics and kinetics of oxidation of pure indium solders. Thermodyn. Kinet. Oxid. Pure Indium Solders 968, 1 (2007).
31.
go back to reference A. Di Renzo, G. Picarelli, and F.P. Di Maio, Numerical investigation of funicular liquid bridge interactions between spherical particles. Chem. Eng. Technol. 43, 830 (2020).CrossRef A. Di Renzo, G. Picarelli, and F.P. Di Maio, Numerical investigation of funicular liquid bridge interactions between spherical particles. Chem. Eng. Technol. 43, 830 (2020).CrossRef
33.
go back to reference J.P. Wang, E. Gallo, B. François, F. Gabrieli, and P. Lambert, Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol. 305, 89 (2017).CrossRef J.P. Wang, E. Gallo, B. François, F. Gabrieli, and P. Lambert, Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol. 305, 89 (2017).CrossRef
34.
go back to reference S. Wang, F. Liu, J. Cui, M. Miao, and C. Pu, Experimental study on the rupture behavior of the liquid bridge between three rigid spheres. Langmuir 38, 13857 (2022).PubMedCrossRef S. Wang, F. Liu, J. Cui, M. Miao, and C. Pu, Experimental study on the rupture behavior of the liquid bridge between three rigid spheres. Langmuir 38, 13857 (2022).PubMedCrossRef
35.
go back to reference J.P. Wang, Force transmission modes of non-cohesive and cohesive materials at the critical state. Materials (Basel) 10, 1014 (2017).ADSPubMedCrossRef J.P. Wang, Force transmission modes of non-cohesive and cohesive materials at the critical state. Materials (Basel) 10, 1014 (2017).ADSPubMedCrossRef
36.
go back to reference C.F. Zhao, N.P. Kruyt, and O. Millet, Capillary bridges between unequal-sized spherical particles: rupture distances and capillary forces. Powder Technol. 346, 462 (2019).CrossRef C.F. Zhao, N.P. Kruyt, and O. Millet, Capillary bridges between unequal-sized spherical particles: rupture distances and capillary forces. Powder Technol. 346, 462 (2019).CrossRef
37.
go back to reference H.N.G. Nguyen, O. Millet, and G. Gagneux, Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles. Math. Mech. Solids 24, 2767 (2019).MathSciNetCrossRef H.N.G. Nguyen, O. Millet, and G. Gagneux, Exact calculation of axisymmetric capillary bridge properties between two unequal-sized spherical particles. Math. Mech. Solids 24, 2767 (2019).MathSciNetCrossRef
38.
go back to reference D. Wu, P. Zhou, G. Wang, B. Zhao, T. Howes, and W. Chen, Modeling of capillary force between particles with unequal contact angle. Powder Technol. 376, 390 (2020).CrossRef D. Wu, P. Zhou, G. Wang, B. Zhao, T. Howes, and W. Chen, Modeling of capillary force between particles with unequal contact angle. Powder Technol. 376, 390 (2020).CrossRef
39.
go back to reference J.G. Bai, T.G. Lei, J.N. Calata, and G.Q. Lu, Control of nanosilver sintering attained through organic binder burnout. J. Mater. Res. 22, 3494 (2007).ADSCrossRef J.G. Bai, T.G. Lei, J.N. Calata, and G.Q. Lu, Control of nanosilver sintering attained through organic binder burnout. J. Mater. Res. 22, 3494 (2007).ADSCrossRef
40.
go back to reference M.A. Galler, D.P. Bentz, and J.A. Lewis, Computer simulations of binder removal from 2D and 3D model particulate bodies. J. Am. Ceram. Soc. 79, 1377 (1996).CrossRef M.A. Galler, D.P. Bentz, and J.A. Lewis, Computer simulations of binder removal from 2D and 3D model particulate bodies. J. Am. Ceram. Soc. 79, 1377 (1996).CrossRef
41.
go back to reference W. Xu, M. Jia, and Z. Gong, Thermal conductivity and tortuosity of porous composites considering percolation of porous network: From spherical to polyhedral pores. Compos. Sci. Technol. 167, 134 (2018).CrossRef W. Xu, M. Jia, and Z. Gong, Thermal conductivity and tortuosity of porous composites considering percolation of porous network: From spherical to polyhedral pores. Compos. Sci. Technol. 167, 134 (2018).CrossRef
42.
go back to reference A. Ukshe, A. Glukhov, and Y. Dobrovolsky, Percolation model for conductivity of composites with segregation of small conductive particles on the grain boundaries. J. Mater. Sci. 55, 6581 (2020).ADSCrossRef A. Ukshe, A. Glukhov, and Y. Dobrovolsky, Percolation model for conductivity of composites with segregation of small conductive particles on the grain boundaries. J. Mater. Sci. 55, 6581 (2020).ADSCrossRef
43.
go back to reference P.J. Brigandi, Electrically conductive multiphase polymer blend carbon-based composites, Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites. (Bethlehem: Lehigh University, 2017). P.J. Brigandi, Electrically conductive multiphase polymer blend carbon-based composites, Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites. (Bethlehem: Lehigh University, 2017).
44.
go back to reference W. Villanueva, Diffuse-interface simulations of capillary phenomena, Diffuse-Interface Simulations of Capillary Phenomena. (Sweden: Royal Institute of Technology in Stockholm, 2007). W. Villanueva, Diffuse-interface simulations of capillary phenomena, Diffuse-Interface Simulations of Capillary Phenomena. (Sweden: Royal Institute of Technology in Stockholm, 2007).
45.
go back to reference Z.Z. Fang, Sintering of advanced materials–fundamentals and processes, Sintering of Advanced Materials–Fundamentals and Processes. (Sawston: Woodhead Publishing, 2010).CrossRef Z.Z. Fang, Sintering of advanced materials–fundamentals and processes, Sintering of Advanced Materials–Fundamentals and Processes. (Sawston: Woodhead Publishing, 2010).CrossRef
46.
go back to reference Z. Fu and A. Roosen, Shrinkage of tape cast products during binder burnout. J. Am. Ceram. Soc. 98, 20 (2015).CrossRef Z. Fu and A. Roosen, Shrinkage of tape cast products during binder burnout. J. Am. Ceram. Soc. 98, 20 (2015).CrossRef
Metadata
Title
In Situ Electrical Characterization of Transient Liquid-Phase Sintered Alloys
Authors
G. Nave
P. McCluskey
Publication date
17-12-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10847-3

Other articles of this Issue 3/2024

Journal of Electronic Materials 3/2024 Go to the issue