Skip to main content
Top
Published in: Polymer Bulletin 12/2017

27-03-2017 | Original Paper

In situ polymerisation and characteristic properties of the waterborne graphene oxide/poly(siloxane-urethane)s nanocomposites

Authors: Maw-Cherng Suen, Jia-Hao Gu, Hsun-Tsing Lee, Cheng-Lung Wu, Chien-Shiun Liao, Jia-Jyun Yang

Published in: Polymer Bulletin | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, waterborne graphene oxide/poly(siloxane-urethane)s (GO/SWPUs) nanocomposites were in situ synthesised. Therein, siloxane units facilitated the crosslinking of polyurethanes, and GO imparted the nanocomposites with special functions. With increasing GO content, the average particle size, viscosity, and ionic conductivity of the GO/SWPU dispersion increased, but the absolute value of the zeta potential decreased; this was due to ionic interactions between the COONH+(C2H5)3 ions of the SWPU and COOH+ ions of the GO. The surface roughness of the GO/SWPU film was larger as GO content was higher, which was due to a strong interaction between the GO and SWPU phases. Increasing the GO content improved the thermal resistance, dynamic glass transition temperature, and tensile strength of the GO/SWPU film, but adding more than 0.1 wt% GO yielded unfavourable results. Thus, adding GO improved the thermal and mechanical properties of the GO/SWPU nanocomposites, but this improvement was observed only up to a certain GO concentration, possibly because of the agglutination of GO in SWPU. In addition, the surface and volumetric electrical resistivities of the GO/SWPU nanocomposites decreased when the GO content were increased.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hepburn C (1982) Polyurethane elastomers. Applied Science, London Hepburn C (1982) Polyurethane elastomers. Applied Science, London
2.
go back to reference Tout R (2000) A review of adhesives for furniture. Int J Adhes Adhes 20:269–272CrossRef Tout R (2000) A review of adhesives for furniture. Int J Adhes Adhes 20:269–272CrossRef
3.
go back to reference Yoon SS, Kim SC (2005) Modification of aqueous polyurethane dispersions by polybutadiene. J Appl Polym Sci 95:1062–1068CrossRef Yoon SS, Kim SC (2005) Modification of aqueous polyurethane dispersions by polybutadiene. J Appl Polym Sci 95:1062–1068CrossRef
4.
go back to reference Mohanty S, Krishnamurti N (1996) Synthesis and characterization of aqueous cationomeric polyurethanes and their use as adhesives. J Appl Polym Sci 62:1993–2003CrossRef Mohanty S, Krishnamurti N (1996) Synthesis and characterization of aqueous cationomeric polyurethanes and their use as adhesives. J Appl Polym Sci 62:1993–2003CrossRef
5.
go back to reference Perez-Liminana M, Aran-Ais F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25:507–517CrossRef Perez-Liminana M, Aran-Ais F, Torró-Palau AM, Orgilés-Barceló AC, Martín-Martínez JM (2005) Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. Int J Adhes Adhes 25:507–517CrossRef
6.
go back to reference Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloids Surf A 179:71CrossRef Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloids Surf A 179:71CrossRef
7.
go back to reference Du H, Zhao Y, Li Q, Wang J, Kang M, Wang X, Xiang H (2008) Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. J Appl Polym Sci 110:1396–1402CrossRef Du H, Zhao Y, Li Q, Wang J, Kang M, Wang X, Xiang H (2008) Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI. J Appl Polym Sci 110:1396–1402CrossRef
8.
go back to reference Kim HD, Kim TW (1998) Preparation and properties of UV-curable polyurethane acrylate ionomers. J Appl Polym Sci 67:2153–2162CrossRef Kim HD, Kim TW (1998) Preparation and properties of UV-curable polyurethane acrylate ionomers. J Appl Polym Sci 67:2153–2162CrossRef
9.
go back to reference Vogt-Birnbrich B (1996) Novel synthesis of low VOC polymeric dispersions and their application in waterborne coatings. Prog Org Coat 29:31–38CrossRef Vogt-Birnbrich B (1996) Novel synthesis of low VOC polymeric dispersions and their application in waterborne coatings. Prog Org Coat 29:31–38CrossRef
10.
go back to reference Blank WJ, Tramontano VJ (1996) Properties of crosslinked polyurethane dispersions. Prog Org Coat 27:1–15CrossRef Blank WJ, Tramontano VJ (1996) Properties of crosslinked polyurethane dispersions. Prog Org Coat 27:1–15CrossRef
11.
go back to reference Lee HT, Wang CC (2005) Synthesis and properties of aqueous polyurethane/polytert-butylacrylate hybrid dispersions. J Polym Res 12:271–277CrossRef Lee HT, Wang CC (2005) Synthesis and properties of aqueous polyurethane/polytert-butylacrylate hybrid dispersions. J Polym Res 12:271–277CrossRef
12.
go back to reference Hirose M, Zhou J, Nagai K (2000) The structure and properties of acrylic-polyurethane hybrid emulsions. Prog Org Coat 38:27–34CrossRef Hirose M, Zhou J, Nagai K (2000) The structure and properties of acrylic-polyurethane hybrid emulsions. Prog Org Coat 38:27–34CrossRef
13.
go back to reference Sperling LH (1997) Polymeric multicomponent materials. Wiley, New York Sperling LH (1997) Polymeric multicomponent materials. Wiley, New York
14.
go back to reference Adler HJ, Jahny K, Vogt-Birnbrich B (2001) Polyurethane macromers—new building blocks for acrylic hybrid emulsions with outstanding performance. Prog Org Coat 43:251–257CrossRef Adler HJ, Jahny K, Vogt-Birnbrich B (2001) Polyurethane macromers—new building blocks for acrylic hybrid emulsions with outstanding performance. Prog Org Coat 43:251–257CrossRef
15.
go back to reference Huang X, Ren T, Tang X (2003) Porous polyurethane/acrylate polymer electrolytes prepared byemulsion polymerization. Mater Lett 57:4182–4186CrossRef Huang X, Ren T, Tang X (2003) Porous polyurethane/acrylate polymer electrolytes prepared byemulsion polymerization. Mater Lett 57:4182–4186CrossRef
16.
go back to reference Park MS, Cho YH, Kim BK, Jang JS (2002) Fabrication of reflective holographic gratings with polyurethane acrylate (PUA). Curr Appl Phys 2:249–252CrossRef Park MS, Cho YH, Kim BK, Jang JS (2002) Fabrication of reflective holographic gratings with polyurethane acrylate (PUA). Curr Appl Phys 2:249–252CrossRef
17.
go back to reference Chen GN, Chen KN (1999) Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J Appl Polym Sci 71:903–913CrossRef Chen GN, Chen KN (1999) Hybridization of aqueous-based polyurethane with glycidyl methacrylate copolymer. J Appl Polym Sci 71:903–913CrossRef
18.
go back to reference Oh IS, Park NH, Suh KD (2000) Mechanical and surface hardness properties of ultraviolet—cured polyurethane acrylate anionomer/silica composite film. J Appl Polym Sci 75:968–975CrossRef Oh IS, Park NH, Suh KD (2000) Mechanical and surface hardness properties of ultraviolet—cured polyurethane acrylate anionomer/silica composite film. J Appl Polym Sci 75:968–975CrossRef
19.
go back to reference Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
20.
go back to reference Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef
21.
go back to reference Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
22.
go back to reference Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367CrossRef Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367CrossRef
23.
go back to reference Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as Ph sensor. J Am Chem Soc 130:14392–14393CrossRef Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as Ph sensor. J Am Chem Soc 130:14392–14393CrossRef
24.
go back to reference Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef
25.
go back to reference Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M (2010) Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J Phys Chem C 114:9659–9663CrossRef Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M (2010) Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J Phys Chem C 114:9659–9663CrossRef
26.
go back to reference Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos A 42:1856–1861CrossRef Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos A 42:1856–1861CrossRef
27.
go back to reference Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707CrossRef Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707CrossRef
28.
go back to reference Wang X, Weiyi X, Lei S, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784CrossRef Wang X, Weiyi X, Lei S, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784CrossRef
29.
go back to reference Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef
30.
go back to reference Liao KH, Qian Y, Macosko CW (2012) Ultralow percolation graphene/polyurethane acrylate nanocomposites. Polymer 53:3756–3761CrossRef Liao KH, Qian Y, Macosko CW (2012) Ultralow percolation graphene/polyurethane acrylate nanocomposites. Polymer 53:3756–3761CrossRef
31.
go back to reference Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide aspseudo-crosslinker. Mater Lett 106:319–321CrossRef Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis of graphene–polyurethane nanocomposite using highly functionalized graphene oxide aspseudo-crosslinker. Mater Lett 106:319–321CrossRef
32.
go back to reference Oh SM, Oh KM, Dao TD, Lee H, Jeong HM, Kimb BK (2013) Themodification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54–63CrossRef Oh SM, Oh KM, Dao TD, Lee H, Jeong HM, Kimb BK (2013) Themodification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54–63CrossRef
33.
go back to reference Lee SK, Kim BK (2014) Synthesis and properties of shape memory graphene oxide/polyurethane chemical hybrids. Polym Int 63:1197–1201CrossRef Lee SK, Kim BK (2014) Synthesis and properties of shape memory graphene oxide/polyurethane chemical hybrids. Polym Int 63:1197–1201CrossRef
34.
go back to reference Redondo-Foj B, Ortiz-Serna P, Carsí M, Sanchis MJ, Culebras M, Gómezb CM, Cantarerob A (2014) Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polym Int. doi:10.1002/pi.4788 (Article first published online: 26 AUG 2014) Redondo-Foj B, Ortiz-Serna P, Carsí M, Sanchis MJ, Culebras M, Gómezb CM, Cantarerob A (2014) Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polym Int. doi:10.​1002/​pi.​4788 (Article first published online: 26 AUG 2014)
35.
go back to reference Xin J, Mi HY, Salick MR, Peng XF, Turng LS (2014) Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym Compsites 35:1408–1417CrossRef Xin J, Mi HY, Salick MR, Peng XF, Turng LS (2014) Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym Compsites 35:1408–1417CrossRef
36.
go back to reference Pokharel P, Lee DS (2014) High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 253:356–365CrossRef Pokharel P, Lee DS (2014) High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 253:356–365CrossRef
37.
go back to reference Chen T, Qiu J, Zhu K, He X, Kang X, Dong E (2014) Poly(methylmethacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain. Mater Lett 128:19–22CrossRef Chen T, Qiu J, Zhu K, He X, Kang X, Dong E (2014) Poly(methylmethacrylate)-functionalized graphene/polyurethane dielectric elastomer composites with superior electric field induced strain. Mater Lett 128:19–22CrossRef
38.
go back to reference Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21CrossRef Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) Synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21CrossRef
39.
go back to reference Liao CS, Liao CT, Tso CY, Shy HJ (2011) Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater Chem Phys 130:270–274CrossRef Liao CS, Liao CT, Tso CY, Shy HJ (2011) Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater Chem Phys 130:270–274CrossRef
40.
go back to reference Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloid Surf A Physicochem Eng 196:135–143CrossRef Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion. Colloid Surf A Physicochem Eng 196:135–143CrossRef
41.
go back to reference Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloid Surf A Physicochem Eng 179:71–78CrossRef Jhon YK, Cheong IW, Kim JH (2001) Chain extension study of aqueous polyurethane dispersions. Colloid Surf A Physicochem Eng 179:71–78CrossRef
42.
go back to reference Lee HT, Hwang YT, Chang NS, Huang CCT, Li HC (1995) Waterborne high-solids and powder coatings symposium. New Orleans, p 224 Lee HT, Hwang YT, Chang NS, Huang CCT, Li HC (1995) Waterborne high-solids and powder coatings symposium. New Orleans, p 224
43.
go back to reference Saunders JH, Frisch KC (1962) Polyurethanes: chemistry and technology. Interscience Publishers, New York, p 173 Saunders JH, Frisch KC (1962) Polyurethanes: chemistry and technology. Interscience Publishers, New York, p 173
44.
go back to reference Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650CrossRef
45.
go back to reference Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Composites 33:1866–1873CrossRef Zhou L, Fang S, Tang J, Gao L, Yang J (2012) Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym Composites 33:1866–1873CrossRef
46.
go back to reference Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856CrossRef Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856CrossRef
Metadata
Title
In situ polymerisation and characteristic properties of the waterborne graphene oxide/poly(siloxane-urethane)s nanocomposites
Authors
Maw-Cherng Suen
Jia-Hao Gu
Hsun-Tsing Lee
Cheng-Lung Wu
Chien-Shiun Liao
Jia-Jyun Yang
Publication date
27-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 12/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-1990-6

Other articles of this Issue 12/2017

Polymer Bulletin 12/2017 Go to the issue

Premium Partners