Skip to main content
Top
Published in: Journal of Materials Science 7/2019

19-12-2018 | Composites

In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility

Authors: Jie Wang, Xiang Zhang, Naiqin Zhao, Chunnian He

Published in: Journal of Materials Science | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a novel copper nanoparticles-modified graphene (Cu-NPs@GN)-reinforced Al matrix composites were fabricated. The Cu-NPs@GN hybrids were firstly synthesized by an NaCl template-assisted in situ CVD method and then incorporated into the Al matrix to fabricate Cu-NPs@GN/Al bulk composites by cold-press sintering and hot extrusion. With the merit of the unique characteristic of Cu-NPs@GN hybrid, the Cu-NPs@GN/Al composites exhibited homogeneously dispersed GNs and a strong GN–Al interfacial bonding. It was found that the in situ grown Cu-NPs@GN showed much better strengthening effect than that of the ex situ grown counterparts, which might be attributed to the pinning effect of Al2Cu at the interface and thus promote the load transfer efficiency. Compared with pure Al, the composites with only 0.75 wt% Cu-NPs@GN exhibited a 68% increase in tensile strength (224 MPa) as well as had a total elongation of 17.5%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rabadia CD, Liu YJ, Wang L et al (2018) Laves phase precipitation in Ti–Zr–Fe–Cr alloys with high strength and large plasticity. Mater Des 154:228–238CrossRef Rabadia CD, Liu YJ, Wang L et al (2018) Laves phase precipitation in Ti–Zr–Fe–Cr alloys with high strength and large plasticity. Mater Des 154:228–238CrossRef
2.
go back to reference Ehtemam-Haghighi S, Liu Y, Cao G et al (2016) Influence of Nb on the β → α martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng C Mater Biol Appl 60:503–510CrossRef Ehtemam-Haghighi S, Liu Y, Cao G et al (2016) Influence of Nb on the β → α martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng C Mater Biol Appl 60:503–510CrossRef
3.
go back to reference Yu P, Zhang LC, Zhang WY et al (2007) Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Mater Sci Eng, A 444:206–213CrossRef Yu P, Zhang LC, Zhang WY et al (2007) Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Mater Sci Eng, A 444:206–213CrossRef
4.
go back to reference Zhou W, Yamaguchi T, Kikuchi K et al (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376CrossRef Zhou W, Yamaguchi T, Kikuchi K et al (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376CrossRef
5.
go back to reference Zhao M, Xiong DB, Tan Z et al (2017) Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites. Scripta Mater 139:44–48CrossRef Zhao M, Xiong DB, Tan Z et al (2017) Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites. Scripta Mater 139:44–48CrossRef
6.
go back to reference Feng S, Guo Q, Li Z et al (2017) Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater 125:98–108CrossRef Feng S, Guo Q, Li Z et al (2017) Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater 125:98–108CrossRef
7.
go back to reference Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
8.
go back to reference Chen SJ, Li CY, Wang Q et al (2017) Reinforcing mechanism of graphene at atomic level: friction, crack surface adhesion and 2D geometry. Carbon 114:557–565CrossRef Chen SJ, Li CY, Wang Q et al (2017) Reinforcing mechanism of graphene at atomic level: friction, crack surface adhesion and 2D geometry. Carbon 114:557–565CrossRef
9.
go back to reference Shin SE, Choi HJ, Shin JH et al (2015) Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82:143–151CrossRef Shin SE, Choi HJ, Shin JH et al (2015) Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82:143–151CrossRef
10.
go back to reference Yan SJ, Dai SL, Zhang XY et al (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng, A 612:440–444CrossRef Yan SJ, Dai SL, Zhang XY et al (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng, A 612:440–444CrossRef
11.
go back to reference Wang J, Li Z, Fan G et al (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597CrossRef Wang J, Li Z, Fan G et al (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597CrossRef
12.
go back to reference Bartolucci SF, Paras J, Rafiee MA et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng, A 528:7933–7937CrossRef Bartolucci SF, Paras J, Rafiee MA et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng, A 528:7933–7937CrossRef
13.
go back to reference Zhao ZY, Guan RG, Guan XH et al (2015) Microstructures and properties of graphene-Cu/Al composite prepared by a novel process through clad forming and improving wettability with copper. Adv Eng Mater 7:663–668CrossRef Zhao ZY, Guan RG, Guan XH et al (2015) Microstructures and properties of graphene-Cu/Al composite prepared by a novel process through clad forming and improving wettability with copper. Adv Eng Mater 7:663–668CrossRef
15.
go back to reference Fadavi Boostani A, Tahamtan S, Jiang ZY et al (2015) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci 68:155–163CrossRef Fadavi Boostani A, Tahamtan S, Jiang ZY et al (2015) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci 68:155–163CrossRef
16.
go back to reference Zhang Y, Li X (2017) Bioinspired, Graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17:6907–6915CrossRef Zhang Y, Li X (2017) Bioinspired, Graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17:6907–6915CrossRef
17.
go back to reference Zhang X, Li S, Pan D et al (2018) Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Compos Part A Appl Sci 105:87–96CrossRef Zhang X, Li S, Pan D et al (2018) Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Compos Part A Appl Sci 105:87–96CrossRef
18.
go back to reference Tang Y, Yang X, Wang R et al (2014) Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng, A 599:247–254CrossRef Tang Y, Yang X, Wang R et al (2014) Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng, A 599:247–254CrossRef
19.
go back to reference Zhang D, Zhan Z (2016) Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J Alloy Compd 658:663–671CrossRef Zhang D, Zhan Z (2016) Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties. J Alloy Compd 658:663–671CrossRef
20.
go back to reference Liu G, Zhao N, Shi C et al (2017) In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mater Sci Eng, A 699:185–193CrossRef Liu G, Zhao N, Shi C et al (2017) In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mater Sci Eng, A 699:185–193CrossRef
21.
go back to reference Jiang C, Liu Z-K (2003) Computational investigation of constitutional liquation in Al–Cu alloys. Acta Mater 51:4447–4459CrossRef Jiang C, Liu Z-K (2003) Computational investigation of constitutional liquation in Al–Cu alloys. Acta Mater 51:4447–4459CrossRef
22.
go back to reference Zhang L, Wang J, Du Y et al (2009) Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD. Acta Mater 57:5324–5341CrossRef Zhang L, Wang J, Du Y et al (2009) Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD. Acta Mater 57:5324–5341CrossRef
23.
go back to reference Zhang X, Shi C, Liu E et al (2017) In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility. Compos Part A Appl Sci 103:178–187CrossRef Zhang X, Shi C, Liu E et al (2017) In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility. Compos Part A Appl Sci 103:178–187CrossRef
24.
go back to reference Zhang X, Shi C, Liu E et al (2017) Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale 9:11929–11938CrossRef Zhang X, Shi C, Liu E et al (2017) Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale 9:11929–11938CrossRef
25.
go back to reference Qin J, He C, Zhao N et al (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef Qin J, He C, Zhao N et al (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef
26.
go back to reference Zhou J, Qin J, Zhang X et al (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848CrossRef Zhou J, Qin J, Zhang X et al (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848CrossRef
27.
go back to reference Qin J, Wang T, Liu D et al (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-Ion battery anode. Adv Mater 3:1704670CrossRef Qin J, Wang T, Liu D et al (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-Ion battery anode. Adv Mater 3:1704670CrossRef
28.
go back to reference Yang M, Weng L, Zhu H et al (2017) Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon 118:250–260CrossRef Yang M, Weng L, Zhu H et al (2017) Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon 118:250–260CrossRef
29.
go back to reference Qu X, Wang F, Shi C et al (2018) In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering. Mater Sci Eng, A 709:223–231CrossRef Qu X, Wang F, Shi C et al (2018) In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering. Mater Sci Eng, A 709:223–231CrossRef
30.
go back to reference Xin L, Yang W, Zhao Q et al (2017) Strengthening behavior in SiC nanowires reinforced pure Al composite. J Alloy Compd 695:2406–2412CrossRef Xin L, Yang W, Zhao Q et al (2017) Strengthening behavior in SiC nanowires reinforced pure Al composite. J Alloy Compd 695:2406–2412CrossRef
31.
go back to reference Jiang L, Li Z, Fan G et al (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66:331–334CrossRef Jiang L, Li Z, Fan G et al (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater 66:331–334CrossRef
32.
go back to reference Rashad M, Pan F, Tang A et al (2014) Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci 24:101–108CrossRef Rashad M, Pan F, Tang A et al (2014) Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci 24:101–108CrossRef
33.
go back to reference Zhao L, Lu H, Gao Z (2015) Microstructure and mechanical properties of Al/Graphene composite produced by high-pressure Torsion. Adv Eng Mater 17:976–981CrossRef Zhao L, Lu H, Gao Z (2015) Microstructure and mechanical properties of Al/Graphene composite produced by high-pressure Torsion. Adv Eng Mater 17:976–981CrossRef
34.
go back to reference Li Z, Guo Q, Li Z et al (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett 15:8077–8083CrossRef Li Z, Guo Q, Li Z et al (2015) Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett 15:8077–8083CrossRef
35.
go back to reference George R, Kashyap KT, Rahul R et al (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef George R, Kashyap KT, Rahul R et al (2005) Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr Mater 53:1159–1163CrossRef
36.
go back to reference Zhang H, Xu C, Xiao W et al (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng, A 658:8–15CrossRef Zhang H, Xu C, Xiao W et al (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng, A 658:8–15CrossRef
37.
go back to reference Chen B, Shen J, Ye X et al (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140:317–325CrossRef Chen B, Shen J, Ye X et al (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140:317–325CrossRef
38.
go back to reference Fu K, Zhang X, Shi C et al (2018) An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater Sci Eng, A 715:108–116CrossRef Fu K, Zhang X, Shi C et al (2018) An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater Sci Eng, A 715:108–116CrossRef
39.
go back to reference Hansen N (2004) Hall-Petch relation and boundary strengthening. Scr Mater 51:801–806CrossRef Hansen N (2004) Hall-Petch relation and boundary strengthening. Scr Mater 51:801–806CrossRef
40.
go back to reference Chu K, Wang F, Li Y et al (2018) Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Compos Part A Appl Sci 109:267–279CrossRef Chu K, Wang F, Li Y et al (2018) Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene. Compos Part A Appl Sci 109:267–279CrossRef
41.
go back to reference Munoz-Morris MA, Garcia-Oca C, Morris DG (2002) An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater 50:2825–2836CrossRef Munoz-Morris MA, Garcia-Oca C, Morris DG (2002) An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater 50:2825–2836CrossRef
42.
go back to reference Zhang D, Zhan Z (2016) Strengthening effect of graphene derivatives in copper matrix composites. J Alloy Compd 654:226–233CrossRef Zhang D, Zhan Z (2016) Strengthening effect of graphene derivatives in copper matrix composites. J Alloy Compd 654:226–233CrossRef
Metadata
Title
In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility
Authors
Jie Wang
Xiang Zhang
Naiqin Zhao
Chunnian He
Publication date
19-12-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03245-2

Other articles of this Issue 7/2019

Journal of Materials Science 7/2019 Go to the issue

Premium Partners