Skip to main content
Top

2020 | OriginalPaper | Chapter

8. In Vitro Degradation Test of Gd-, Si-Substituted Hydroxyapatite

Authors : Elizaveta A. Mukhanova, Ekaterina S. Ivanyutina, Maxim Yu. Stupko, Irina V. Rybal’chenko

Published in: Modeling, Synthesis and Fracture of Advanced Materials for Industrial and Medical Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synthetic hydroxyapatite is involved in osteogenesis when using as an implant. Different substitutions in the hydroxyapatite (HAp) can change the low rate of degradation and solubility of pure hydroxyapatite as well as other physical, chemical, and biological properties. We synthesized single-phase Ca8Gd2(PO4)4(SiO4)2(OH)2 (Gd, Si-HAp) by coprecipitation and investigated its behavior in model solutions: water, simulated body fluid and physiological saline solution (0.9% NaCl). Morphology of samples before and after degradation confirmed that flake-like crystals of initial Gd, Si-HAp is a preferable form for the further precipitation of HAp crystals with needle-like morphology the same as in human body. The degradation rate of substituted Gd, Si-HAp in comparison with pure HAp is higher in different solutions and the rate of nucleation is apparently slower as we can see in a series of in vitro degradation tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31(7), 1465–1485 (2010) Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31(7), 1465–1485 (2010)
2.
go back to reference Adzila S., Murad M., Sopyan I.: Doping metal into calcium phosphate phase for better performance of bone implant materials. Recent Patents Mater. Sci. 5(1), 18–47 (2012) Adzila S., Murad M., Sopyan I.: Doping metal into calcium phosphate phase for better performance of bone implant materials. Recent Patents Mater. Sci. 5(1), 18–47 (2012)
3.
go back to reference Balasundaram, G., Webster, T.J.: A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem. 16(38), 3737 (2006) Balasundaram, G., Webster, T.J.: A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem. 16(38), 3737 (2006)
4.
go back to reference Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., Selvamurugan, N.: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47, 1–4 (2010) Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., Selvamurugan, N.: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47, 1–4 (2010)
5.
go back to reference Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.-Y., Kaufman, M.J., Douglas, E.P., Gower, L.B.: Bone structure and formation: a new perspective. Mater. Sci. Eng. R: Rep. 58(3–5), 77–116 (2007) Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.-Y., Kaufman, M.J., Douglas, E.P., Gower, L.B.: Bone structure and formation: a new perspective. Mater. Sci. Eng. R: Rep. 58(3–5), 77–116 (2007)
6.
go back to reference Porter, A.E., Patel, N., Skepper, J.N., Best, S.M., Bonfield, W.: Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials 25(16), 3303–3314 (2004) Porter, A.E., Patel, N., Skepper, J.N., Best, S.M., Bonfield, W.: Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials 25(16), 3303–3314 (2004)
7.
go back to reference Marchat, D., Zymelka, M., Coelho, C., Gremillard, L., Joly-pottuz, L., Babonneau, F., Esnouf, C., Chevalier, J., Bernache-assollant, D.: Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomater. 9(6), 6992–7004 (2013) Marchat, D., Zymelka, M., Coelho, C., Gremillard, L., Joly-pottuz, L., Babonneau, F., Esnouf, C., Chevalier, J., Bernache-assollant, D.: Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomater. 9(6), 6992–7004 (2013)
8.
go back to reference Camaioni, A., Cacciotti, I., Campagnolo, L., Bianco, A.: Silicon substituted hydroxyapatite for biomedical applications. In: Mucalo M (ed) Hydroxyapatite for biomedical applications. Woodhead Publishing Elsevier Limited Edition, Oxford, pp 343–373 (2015) Camaioni, A., Cacciotti, I., Campagnolo, L., Bianco, A.: Silicon substituted hydroxyapatite for biomedical applications. In: Mucalo M (ed) Hydroxyapatite for biomedical applications. Woodhead Publishing Elsevier Limited Edition, Oxford, pp 343–373 (2015)
9.
go back to reference Leventouri, T.: Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials 24(23), 4205–4211 (2003) Leventouri, T.: Neutron powder diffraction studies of silicon-substituted hydroxyapatite. Biomaterials 24(23), 4205–4211 (2003)
10.
go back to reference Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M.: Silicon incorporation in hydroxylapatite obtained by controlled crystallization. Chem. Mater. 16(11), 2300–2308 (2004) Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M.: Silicon incorporation in hydroxylapatite obtained by controlled crystallization. Chem. Mater. 16(11), 2300–2308 (2004)
11.
go back to reference Seaborn, C.D., Nielsen, F.H.: Effects of germanium and silicon on bone mineralization. Biol. Trace Elem. Res. 42(2), 151–164 (1994) Seaborn, C.D., Nielsen, F.H.: Effects of germanium and silicon on bone mineralization. Biol. Trace Elem. Res. 42(2), 151–164 (1994)
12.
go back to reference Barta, C.A., Sachs-Barrable, K., Jia, J., Thompson, K.H., Wasan, K.M.: Lanthanide containing compounds for therapeutic care in bone resorption disorders. Orvig C Barta, C.A., Sachs-Barrable, K., Jia, J., Thompson, K.H., Wasan, K.M.: Lanthanide containing compounds for therapeutic care in bone resorption disorders. Orvig C
13.
go back to reference Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6, 1882–1894 Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6, 1882–1894
14.
go back to reference Li, X., Zeng, H., Teng, L., Chen, H.: Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Mater. Lett. 125, 78–81 (2014) Li, X., Zeng, H., Teng, L., Chen, H.: Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Mater. Lett. 125, 78–81 (2014)
15.
go back to reference Chen, F., Huang, P., Zhu, Y.J., Wu, J., Zhang,, C.L., Cui, D.X.: The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 32(34), 9031–9039 (2011) Chen, F., Huang, P., Zhu, Y.J., Wu, J., Zhang,, C.L., Cui, D.X.: The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 32(34), 9031–9039 (2011)
16.
go back to reference Liu, Z., Wang, Q., Yao, S., Yang, L., Yu, S., Feng, X., Li, F.: Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceramics Int. 40(2), 2613–2617 (2014) Liu, Z., Wang, Q., Yao, S., Yang, L., Yu, S., Feng, X., Li, F.: Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceramics Int. 40(2), 2613–2617 (2014)
17.
go back to reference Yasukawa, A., Kandori, K., Tanaka, H., Gotoh, K.: Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions. Mater. Res. Bull. 47, 1257–1263 (2012) Yasukawa, A., Kandori, K., Tanaka, H., Gotoh, K.: Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions. Mater. Res. Bull. 47, 1257–1263 (2012)
18.
go back to reference Yasukawa, A., Gotoh, K., Tanaka, H., Kandori, K.: Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Colloids Surf. A : Physicochem. Eng. Asp. 393, 53–59 (2011) Yasukawa, A., Gotoh, K., Tanaka, H., Kandori, K.: Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Colloids Surf. A : Physicochem. Eng. Asp. 393, 53–59 (2011)
19.
go back to reference Fleet, M.E., Liu, X., Pan, Y.: Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J. Solid State Chem. 149(2), 391–398 (2000) Fleet, M.E., Liu, X., Pan, Y.: Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J. Solid State Chem. 149(2), 391–398 (2000)
20.
go back to reference Cawthray, J.F., Creagh, A.L., Haynes, C.A., Orvig, C.: Ion exchange in hydroxyapatite with lanthanides. Inorg. Chem. 54(4), 1440–1445 (2015) Cawthray, J.F., Creagh, A.L., Haynes, C.A., Orvig, C.: Ion exchange in hydroxyapatite with lanthanides. Inorg. Chem. 54(4), 1440–1445 (2015)
21.
go back to reference Cipreste, M.F., Peres, A.M., Cotta, A.A.C., Aragón, F.H., de Antunes, A.M., Leal, A.S., Macedo, W.A.A., de Sousa, E.M.B.: Synthesis and characterization of 159Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems. Mater. Chem. Phys. 181, 301–311 (2016) Cipreste, M.F., Peres, A.M., Cotta, A.A.C., Aragón, F.H., de Antunes, A.M., Leal, A.S., Macedo, W.A.A., de Sousa, E.M.B.: Synthesis and characterization of 159Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems. Mater. Chem. Phys. 181, 301–311 (2016)
22.
go back to reference Li, Y., Ooi, C.P., Philip, Hong Ning, C., Aik Khor, K.: Synthesis and characterization of Neodymium(III) and Gadolinium(III)-Substituted Hydroxyapatite as Biomaterials. Int. J. Appl. Ceram. Technol. 6(4), 501–512 (2009) Li, Y., Ooi, C.P., Philip, Hong Ning, C., Aik Khor, K.: Synthesis and characterization of Neodymium(III) and Gadolinium(III)-Substituted Hydroxyapatite as Biomaterials. Int. J. Appl. Ceram. Technol. 6(4), 501–512 (2009)
23.
go back to reference Valcheva-Traykova, M., Saso, L., Kostova, I.: Involvement of Lanthanides in the free radicals homeostasis. Curr. Topics Med. Chem. 14(22), 2508–2519 (2014) Valcheva-Traykova, M., Saso, L., Kostova, I.: Involvement of Lanthanides in the free radicals homeostasis. Curr. Topics Med. Chem. 14(22), 2508–2519 (2014)
24.
go back to reference Xu, Z.-Q., Mao, X.-J., Jia, L., Xu, J., Zhu, T.-F., Cai, H.-X., Bie, H.-Y., Chen, R.-H., Ma, T.: Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand. J. Mol. Struct. 1102, 86–90 (2015) Xu, Z.-Q., Mao, X.-J., Jia, L., Xu, J., Zhu, T.-F., Cai, H.-X., Bie, H.-Y., Chen, R.-H., Ma, T.: Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand. J. Mol. Struct. 1102, 86–90 (2015)
25.
go back to reference Xu, X., Liu, Q., Xie, Y.: Metal ion-induced stabilization and refolding of anticoagulation factor II from the Venom of Agkistrodon acutus †. Biochemistry 41(11), 3546–3554 (2002) Xu, X., Liu, Q., Xie, Y.: Metal ion-induced stabilization and refolding of anticoagulation factor II from the Venom of Agkistrodon acutus †. Biochemistry 41(11), 3546–3554 (2002)
26.
go back to reference Mokoena, P.P., Nagpure, I.M., Kumar, V., Kroon, R.E., Olivier, E.J., Neethling, J.H., Swart, H.C., Ntwaeaborwa, O.M.: Enhanced UVB emission and analysis of chemical states of Ca5(PO4)3OH:Gd3+, Pr3+ phosphor prepared by co-precipitation. J. Phys. Chem. Solids 75(8), 998–1003 (2014) Mokoena, P.P., Nagpure, I.M., Kumar, V., Kroon, R.E., Olivier, E.J., Neethling, J.H., Swart, H.C., Ntwaeaborwa, O.M.: Enhanced UVB emission and analysis of chemical states of Ca5(PO4)3OH:Gd3+, Pr3+ phosphor prepared by co-precipitation. J. Phys. Chem. Solids 75(8), 998–1003 (2014)
27.
go back to reference Madhumathi, K. Sampath Kumar, T.S., Sanjeed, T M.: Silver and gadolinium ions co-substituted hydroxyapatite nanoparticles as bimodal contrast agent for medical imaging. Biocerami. Dev. Appl. 4(2), 1–4 (2014) Madhumathi, K. Sampath Kumar, T.S., Sanjeed, T M.: Silver and gadolinium ions co-substituted hydroxyapatite nanoparticles as bimodal contrast agent for medical imaging. Biocerami. Dev. Appl. 4(2), 1–4 (2014)
28.
go back to reference Gibson, I.R., Skakle, J., Smith, N., Buckland, T.: Biomedical materials, Patent US20100322867 (23.12.2010) Gibson, I.R., Skakle, J., Smith, N., Buckland, T.: Biomedical materials, Patent US20100322867 (23.12.2010)
29.
go back to reference Yasukawa, A., Kandori, K., Tanaka, H., Gotoh, K.: Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions. Mater. Res. Bull. 47(5), 1257–1263 (2012) Yasukawa, A., Kandori, K., Tanaka, H., Gotoh, K.: Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions. Mater. Res. Bull. 47(5), 1257–1263 (2012)
30.
go back to reference Get’man, E.I., Loboda, S.N., Tkachenko, T.V, Yablochkova, N.V, Chebyshev, K.A.: Isomorphous substitution of samarium and gadolinium for calcium in hydroxyapatite structure. Russ. J. Inorg. Chem. 55(3), 333–338 (2010) Get’man, E.I., Loboda, S.N., Tkachenko, T.V, Yablochkova, N.V, Chebyshev, K.A.: Isomorphous substitution of samarium and gadolinium for calcium in hydroxyapatite structure. Russ. J. Inorg. Chem. 55(3), 333–338 (2010)
31.
go back to reference Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009) Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009)
32.
go back to reference Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006) Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)
33.
go back to reference Zadpoor, A.A.: Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater. Sci. Eng. C. 35(1), 134–143 (2014) Zadpoor, A.A.: Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater. Sci. Eng. C. 35(1), 134–143 (2014)
34.
go back to reference Nayak, A.K.: Hydroxyapatite synthesis methodologies: an overview. Int. J. ChemTech Res. 2(2), 974–4290 (2010) Nayak, A.K.: Hydroxyapatite synthesis methodologies: an overview. Int. J. ChemTech Res. 2(2), 974–4290 (2010)
35.
go back to reference Christoffersen, J., Christoffersen, M.R., Kjaergaard, N.: The kinetics of dissolution of calcium hydroxyapatite in water at constant pH. J. Cryst. Growth. 43(4), 501–511 (1978) Christoffersen, J., Christoffersen, M.R., Kjaergaard, N.: The kinetics of dissolution of calcium hydroxyapatite in water at constant pH. J. Cryst. Growth. 43(4), 501–511 (1978)
36.
go back to reference Okayama, S., Akao, M., Nakamura, S., Shin, Y., Higashikata, M., Aoki, H.: The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Med. Mater. Eng. 1(1), 11–7 (1991) Okayama, S., Akao, M., Nakamura, S., Shin, Y., Higashikata, M., Aoki, H.: The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Med. Mater. Eng. 1(1), 11–7 (1991)
37.
go back to reference Chen, Z.F., Darvell, B.W., Leung, V.W.H., Chen, Z.F.: Hydroxyapatite solubility in simple inorganic solutions. Arch. Oral Biol. 49(5), 359–367 (2004) Chen, Z.F., Darvell, B.W., Leung, V.W.H., Chen, Z.F.: Hydroxyapatite solubility in simple inorganic solutions. Arch. Oral Biol. 49(5), 359–367 (2004)
38.
go back to reference Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W.: The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials 25(26), 5715–5723 (2004) Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W.: The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials 25(26), 5715–5723 (2004)
39.
go back to reference Oyane, A., Kim, H.-M., Furuya, T., Kokubo, T., Miyazaki, T., Nakamura, T.: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 65A(2), 188–195 (2003) Oyane, A., Kim, H.-M., Furuya, T., Kokubo, T., Miyazaki, T., Nakamura, T.: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 65A(2), 188–195 (2003)
40.
go back to reference Dasgupta, S., Sinha, B.C., Rawat, N.S., Dasgupta, S.: Stepwise complexometric determinations of calcium and magnesium in lime and magnesia bearing materials. Trans. Indian Ceram. Soc. 41(1), 14–16 (2014) Dasgupta, S., Sinha, B.C., Rawat, N.S., Dasgupta, S.: Stepwise complexometric determinations of calcium and magnesium in lime and magnesia bearing materials. Trans. Indian Ceram. Soc. 41(1), 14–16 (2014)
41.
go back to reference Barge, A., Cravotto, G., Gianolio, E., Fedeli, F.Barge, A.: How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol. Imag. 1(5), 184–188 (2006) Barge, A., Cravotto, G., Gianolio, E., Fedeli, F.Barge, A.: How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol. Imag. 1(5), 184–188 (2006)
42.
go back to reference Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M.: Crystal-chemical characteristics of Silicon–Neodymium substituted hydroxyapatites studied by combined X-ray and neutron powder diffraction. Chem. Mater. 17(1), 57–64 (2005) Arcos, D., Rodríguez-Carvajal, J., Vallet-Regí, M.: Crystal-chemical characteristics of Silicon–Neodymium substituted hydroxyapatites studied by combined X-ray and neutron powder diffraction. Chem. Mater. 17(1), 57–64 (2005)
43.
go back to reference Yin, N., Chen, S.Y., Ouyang, Y., Tang, L., Yang, J.X., Wang, H.P.: Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog. Nat. Sci.: Mater. Int. 21(6), 472–477 (2011) Yin, N., Chen, S.Y., Ouyang, Y., Tang, L., Yang, J.X., Wang, H.P.: Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog. Nat. Sci.: Mater. Int. 21(6), 472–477 (2011)
44.
go back to reference Karamian, E., Khandan, A., Eslami, M., Gheisari, H., Rafiaei, N.: Investigation of HA nanocrystallite size crystallographic characterizations in NHA, BHA and HA pure powders and their influence on biodegradation of HA. Adv. Mater. Res. 829, 314–318 (2013) Karamian, E., Khandan, A., Eslami, M., Gheisari, H., Rafiaei, N.: Investigation of HA nanocrystallite size crystallographic characterizations in NHA, BHA and HA pure powders and their influence on biodegradation of HA. Adv. Mater. Res. 829, 314–318 (2013)
45.
go back to reference Wang, H.X., Guan, S.K., Wang, X., Ren, C.X., Wang, L.G.: In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 6(5), 1743–1748 (2010) Wang, H.X., Guan, S.K., Wang, X., Ren, C.X., Wang, L.G.: In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 6(5), 1743–1748 (2010)
46.
go back to reference Jongwattanapisan, P., Charoenphandhu, N., Krishnamra, N., Thongbunchoo, J., Tang, I.M., Hoonsawat,, R., Smith, S.M., Pon-On,, W.: In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/ chitosan-silica nanocomposite. Mater. Sci. Eng. C 31(2), 290–299 (2011) Jongwattanapisan, P., Charoenphandhu, N., Krishnamra, N., Thongbunchoo, J., Tang, I.M., Hoonsawat,, R., Smith, S.M., Pon-On,, W.: In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/ chitosan-silica nanocomposite. Mater. Sci. Eng. C 31(2), 290–299 (2011)
47.
go back to reference Ferraz, M.P., Monteiro, F.J., Manuel, C.M.: Hydroxyapatite nanoparticles : a review of preparation methodologies. J. Appl. Biomater. 2(2), 74–80 (2004) Ferraz, M.P., Monteiro, F.J., Manuel, C.M.: Hydroxyapatite nanoparticles : a review of preparation methodologies. J. Appl. Biomater. 2(2), 74–80 (2004)
48.
go back to reference Dorozhkin, S.V.: A review on the dissolution models of calcium apatites. Prog. Cryst. Growth Charact. Mater. 44(1), 45–61 (2002) Dorozhkin, S.V.: A review on the dissolution models of calcium apatites. Prog. Cryst. Growth Charact. Mater. 44(1), 45–61 (2002)
49.
go back to reference Bengtsson, A., Sjöberg, S.: Surface complexation and proton-promoted dissolution in aqueous apatite systems. Pure Appl. Chem. 81(9), 1569–1584 (2009) Bengtsson, A., Sjöberg, S.: Surface complexation and proton-promoted dissolution in aqueous apatite systems. Pure Appl. Chem. 81(9), 1569–1584 (2009)
50.
go back to reference Shikina, N.D., Zotov, A.V, Volchenkova, V.A.: The solubility of Gd(2)Ti(2)O(7) and the hydrolysis of Gd(3+) in acidic solutions at 250A degrees C and saturation vapor pressure. Geochem. Int. 47(4), 372–379 (2009) Shikina, N.D., Zotov, A.V, Volchenkova, V.A.: The solubility of Gd(2)Ti(2)O(7) and the hydrolysis of Gd(3+) in acidic solutions at 250A degrees C and saturation vapor pressure. Geochem. Int. 47(4), 372–379 (2009)
51.
go back to reference Hayakawa, S., Kanaya, T., Tsuru, K., Shirosaki, Y., Osaka, A., Fujii, E., Kawabata,, K., Gasqueres, G., Bonhomme, C., Babonneau, F., Jäger, C., Kleebe, H.-J.: Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater. 9(1), 4856–4867 (2013) Hayakawa, S., Kanaya, T., Tsuru, K., Shirosaki, Y., Osaka, A., Fujii, E., Kawabata,, K., Gasqueres, G., Bonhomme, C., Babonneau, F., Jäger, C., Kleebe, H.-J.: Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater. 9(1), 4856–4867 (2013)
52.
go back to reference Rootare, H.M., Deitz, V.R., Carpenter, F.G.: Solubility product phenomena in hydroxyapatite-water systems. J. Colloid Sci. 17(3), 179–206 (1962) Rootare, H.M., Deitz, V.R., Carpenter, F.G.: Solubility product phenomena in hydroxyapatite-water systems. J. Colloid Sci. 17(3), 179–206 (1962)
53.
go back to reference Branda F., Arcobello-Varlese, F., Costantini, A., Luciani, G.: Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO·2SiO2 glass. Biomaterials 23(3), 711–716 (2002) Branda F., Arcobello-Varlese, F., Costantini, A., Luciani, G.: Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO·2SiO2 glass. Biomaterials 23(3), 711–716 (2002)
54.
go back to reference Taylor, D. Fracture and repair of bone: a multiscale problem. J. Mater. Sci. 42(21), 8911–8918 (2007) Taylor, D. Fracture and repair of bone: a multiscale problem. J. Mater. Sci. 42(21), 8911–8918 (2007)
Metadata
Title
In Vitro Degradation Test of Gd-, Si-Substituted Hydroxyapatite
Authors
Elizaveta A. Mukhanova
Ekaterina S. Ivanyutina
Maxim Yu. Stupko
Irina V. Rybal’chenko
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-48161-2_8

Premium Partners