Skip to main content
Top

2017 | OriginalPaper | Chapter

Industrial Enzymes and Biocatalysis

Authors : Adam L. Garske, Gregory Kapp, Joseph C. McAuliffe

Published in: Handbook of Industrial Chemistry and Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

All life processes, whether plant, animal, or microbial, depend upon a complex network of enzyme-catalyzed chemical reactions for cellular growth and maintenance [1–3]. As protein-based catalysts, enzymes facilitate reactions by enabling alternate reaction mechanisms with lower overall activation energy, without modifying the thermodynamic equilibrium constant or the free energy change of a chemical transformation. They generate enormous kinetic rate accelerations, often exceeding factors of 1012-fold relative to the rate of the uncatalyzed reaction. Enzymes are capable of performing many different chemistries, can be produced on a large scale, and typically operate at ambient temperatures and near neutral pH [4, 5]. These properties have captured the attention of generations of scientists and engineers over the past century and enabled the practical use of enzymes as industrial catalysts. Enzymes are now used extensively across a wide range of applications as demand for environmentally sustainable processes increases in a number of industries [6–9].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Renneberg R (2008) Biotechnology for beginners. Academic Press, Amsterdam Renneberg R (2008) Biotechnology for beginners. Academic Press, Amsterdam
3.
go back to reference Hoffmann PM (2012) Life’s ratchet. Basic Books, New York Hoffmann PM (2012) Life’s ratchet. Basic Books, New York
4.
go back to reference Jencks WP (1987) Catalysis in chemistry and enzymology. McGraw-Hill, New York Jencks WP (1987) Catalysis in chemistry and enzymology. McGraw-Hill, New York
5.
go back to reference Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, New York Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, New York
6.
go back to reference Aehle WE (2007) Enzymes in industry: production and applications, 3rd edn. In: Aehle W (ed). Wiley-VCH, Weinheim Aehle WE (2007) Enzymes in industry: production and applications, 3rd edn. In: Aehle W (ed). Wiley-VCH, Weinheim
7.
go back to reference Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139CrossRef Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139CrossRef
8.
go back to reference Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology, 2nd edn. Wiley-Blackwell, Weinheim Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology, 2nd edn. Wiley-Blackwell, Weinheim
9.
go back to reference Grunwald PE (2014) Industrial biocatalysis. Pan Stanford, Singapore Grunwald PE (2014) Industrial biocatalysis. Pan Stanford, Singapore
10.
go back to reference Dewan SS (2014) Enzymes in industrial applications: global markets report BIO030H. BCC Research, Wellesley Dewan SS (2014) Enzymes in industrial applications: global markets report BIO030H. BCC Research, Wellesley
11.
go back to reference Bommarius AS, Riebel BR (2004) Biocatalysis—fundamentals and applications. Wiley-VCH, Weinheim Bommarius AS, Riebel BR (2004) Biocatalysis—fundamentals and applications. Wiley-VCH, Weinheim
12.
go back to reference MarketsandMarkets (2014) Specialty enzymes market by source, type, application & geography—global trends & forecasts to 2018. MarketsandMarkets MarketsandMarkets (2014) Specialty enzymes market by source, type, application & geography—global trends & forecasts to 2018. MarketsandMarkets
13.
go back to reference Aehle WE (2004) Non-industrial enzyme usage. In: Aehle W (ed) Enzymes in industry: production and applications, 2nd edn. Wiley-VCH, Weinheim Aehle WE (2004) Non-industrial enzyme usage. In: Aehle W (ed) Enzymes in industry: production and applications, 2nd edn. Wiley-VCH, Weinheim
14.
go back to reference Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRef Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRef
15.
go back to reference Taylor AI et al (2015) Catalysts from synthetic genetic polymers. Nature 518:427–430CrossRef Taylor AI et al (2015) Catalysts from synthetic genetic polymers. Nature 518:427–430CrossRef
16.
go back to reference Kohler RE (1972) The reception of Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 5:327–353CrossRef Kohler RE (1972) The reception of Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 5:327–353CrossRef
17.
go back to reference Sumner JB (1946) The chemical nature of enzymes. In: Nobel lecture Sumner JB (1946) The chemical nature of enzymes. In: Nobel lecture
18.
go back to reference Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci U S A 57:484–495CrossRef Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci U S A 57:484–495CrossRef
19.
go back to reference Estell DA (1991) Liquid detergents with stabilized enzymes. US Patent 5,039,446 Estell DA (1991) Liquid detergents with stabilized enzymes. US Patent 5,039,446
20.
go back to reference Manz A et al (2015) Bioanalytical chemistry, 2nd edn. Imperial College Press, LondonCrossRef Manz A et al (2015) Bioanalytical chemistry, 2nd edn. Imperial College Press, LondonCrossRef
21.
go back to reference Whitehurst RJ, Van Oort M (2010) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Chinchester Whitehurst RJ, Van Oort M (2010) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Chinchester
22.
23.
go back to reference Reymond J-L, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 1:34–46 Reymond J-L, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 1:34–46
24.
go back to reference Chen LH et al (1992) 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem 267:17716–17721 Chen LH et al (1992) 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem 267:17716–17721
25.
go back to reference Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317CrossRef Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317CrossRef
26.
go back to reference Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046CrossRef Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046CrossRef
27.
go back to reference Khoury GA et al (2014) Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol 32:99–109CrossRef Khoury GA et al (2014) Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol 32:99–109CrossRef
28.
go back to reference Wrabl JO et al (2011) The role of protein conformational fluctuations in allostery, function, and evolution. Biophys Chem 159:129–141CrossRef Wrabl JO et al (2011) The role of protein conformational fluctuations in allostery, function, and evolution. Biophys Chem 159:129–141CrossRef
29.
go back to reference Banerjee PR, Deniz AA (2014) Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 43:1172–1188CrossRef Banerjee PR, Deniz AA (2014) Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 43:1172–1188CrossRef
30.
go back to reference Bavishi K, Hatzakis NS (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 19:19407–19434CrossRef Bavishi K, Hatzakis NS (2014) Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 19:19407–19434CrossRef
31.
go back to reference Bowler BE (2012) Residual structure in unfolded proteins. Curr Opin Struct Biol 22:4–13CrossRef Bowler BE (2012) Residual structure in unfolded proteins. Curr Opin Struct Biol 22:4–13CrossRef
32.
go back to reference Nick Pace C et al (2010) Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci 19:929–943CrossRef Nick Pace C et al (2010) Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci 19:929–943CrossRef
33.
go back to reference Minten I et al (2014) Post-production modification of industrial enzymes. Appl Microbiol Biotechnol 98:6215–6231CrossRef Minten I et al (2014) Post-production modification of industrial enzymes. Appl Microbiol Biotechnol 98:6215–6231CrossRef
34.
go back to reference Bensimon A, Heck AJR, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405CrossRef Bensimon A, Heck AJR, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405CrossRef
35.
go back to reference Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228CrossRef Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228CrossRef
36.
go back to reference Frueh DP et al (2013) NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol 23:734–739CrossRef Frueh DP et al (2013) NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol 23:734–739CrossRef
37.
go back to reference Palmer AG III (2015) Enzyme dynamics from NMR spectroscopy. Acc Chem Res 48:457–465CrossRef Palmer AG III (2015) Enzyme dynamics from NMR spectroscopy. Acc Chem Res 48:457–465CrossRef
38.
go back to reference Masel RI (2001) Chemical kinetics and catalysis. Wiley Interscience, New York Masel RI (2001) Chemical kinetics and catalysis. Wiley Interscience, New York
39.
go back to reference Bugg TDH (2004) Introduction to enzyme and coenzyme chemistry. Wiley-Blackwell, Oxford, p 31CrossRef Bugg TDH (2004) Introduction to enzyme and coenzyme chemistry. Wiley-Blackwell, Oxford, p 31CrossRef
40.
go back to reference Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–3321CrossRef Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–3321CrossRef
41.
go back to reference Hanoian P et al (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc Chem Res 48:482–489CrossRef Hanoian P et al (2015) Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc Chem Res 48:482–489CrossRef
42.
go back to reference Sauer J et al (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293CrossRef Sauer J et al (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293CrossRef
43.
go back to reference Messerschmidt A (2011) Handbook of metalloproteins. Wiley-Blackwell, Oxford Messerschmidt A (2011) Handbook of metalloproteins. Wiley-Blackwell, Oxford
44.
go back to reference Valdez CE et al (2014) Mysteries of metals in metalloenzymes. Acc Chem Res 47:3110–3117CrossRef Valdez CE et al (2014) Mysteries of metals in metalloenzymes. Acc Chem Res 47:3110–3117CrossRef
45.
go back to reference Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121CrossRef Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121CrossRef
46.
go back to reference Sutcliffe MJ, Scrutton NS (2002) A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 269:3096–3102CrossRef Sutcliffe MJ, Scrutton NS (2002) A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 269:3096–3102CrossRef
47.
go back to reference Doshi U, Hamelberg D (2014) The dilemma of conformational dynamics in enzyme catalysis: perspectives from theory and experiment. Adv Exp Med Biol 805:221–243CrossRef Doshi U, Hamelberg D (2014) The dilemma of conformational dynamics in enzyme catalysis: perspectives from theory and experiment. Adv Exp Med Biol 805:221–243CrossRef
48.
go back to reference Kohen A (2015) Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Acc Chem Res 48:466–473CrossRef Kohen A (2015) Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Acc Chem Res 48:466–473CrossRef
49.
go back to reference Hay S, Scrutton NS (2012) Good vibrations in enzyme-catalysed reactions. Nat Chem 4:161–168CrossRef Hay S, Scrutton NS (2012) Good vibrations in enzyme-catalysed reactions. Nat Chem 4:161–168CrossRef
50.
go back to reference Ojeda-May P et al (2015) Role of protein dynamics in allosteric control of the catalytic phosphoryl transfer of insulin receptor kinase. J Am Chem Soc 137:12454–12457CrossRef Ojeda-May P et al (2015) Role of protein dynamics in allosteric control of the catalytic phosphoryl transfer of insulin receptor kinase. J Am Chem Soc 137:12454–12457CrossRef
51.
go back to reference Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nat Chem 4:169–176CrossRef Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nat Chem 4:169–176CrossRef
52.
go back to reference Pudney CR et al (2013) Enzymatic single-molecule kinetic isotope effects. J Am Chem Soc 135:3855–3864CrossRef Pudney CR et al (2013) Enzymatic single-molecule kinetic isotope effects. J Am Chem Soc 135:3855–3864CrossRef
53.
go back to reference Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369 Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369
54.
go back to reference Yeh WK, Yang HC, McCarthy JR (2010) Enzyme technologies: metagenomics, evolution, biocatalysis and biosynthesis. Wiley, HobokenCrossRef Yeh WK, Yang HC, McCarthy JR (2010) Enzyme technologies: metagenomics, evolution, biocatalysis and biosynthesis. Wiley, HobokenCrossRef
55.
go back to reference Martin CH et al (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286CrossRef Martin CH et al (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286CrossRef
56.
go back to reference Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95CrossRef Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95CrossRef
57.
go back to reference Eggert T (2006) Optimization of industrial enzymes by molecular engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eggert T (2006) Optimization of industrial enzymes by molecular engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
58.
go back to reference Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genome Inform 11:114–120CrossRef Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genome Inform 11:114–120CrossRef
59.
go back to reference Wojcik M et al (2015) High-throughput screening in protein engineering: recent advances and future perspectives. Int J Mol Sci 16:24918–24945CrossRef Wojcik M et al (2015) High-throughput screening in protein engineering: recent advances and future perspectives. Int J Mol Sci 16:24918–24945CrossRef
60.
go back to reference Schallmey M et al (2014) Expanding the halohydrin dehalogenase enzyme family: identification of novel enzymes by database mining. Appl Environ Microbiol 80:7303–7315CrossRef Schallmey M et al (2014) Expanding the halohydrin dehalogenase enzyme family: identification of novel enzymes by database mining. Appl Environ Microbiol 80:7303–7315CrossRef
61.
go back to reference Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547CrossRef Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547CrossRef
62.
go back to reference Knietsch A et al (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416CrossRef Knietsch A et al (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416CrossRef
63.
go back to reference Ward DE et al (2002) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74CrossRef Ward DE et al (2002) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74CrossRef
64.
go back to reference Bottcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282CrossRef Bottcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282CrossRef
65.
go back to reference Miyazaki K, Arnold FH (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49:716–720CrossRef Miyazaki K, Arnold FH (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49:716–720CrossRef
66.
go back to reference Aehle W, Estell DA (2008) Systematic evaluation of sequence and activity relationships using site evaluation libraries for engineering multiple properties Aehle W, Estell DA (2008) Systematic evaluation of sequence and activity relationships using site evaluation libraries for engineering multiple properties
67.
go back to reference Copp JN et al (2014) Error-prone PCR and effective generation of gene variant libraries for directed evolution. Methods Mol Biol 1179:3–22CrossRef Copp JN et al (2014) Error-prone PCR and effective generation of gene variant libraries for directed evolution. Methods Mol Biol 1179:3–22CrossRef
68.
go back to reference Meyer AJ, Ellefson JW, Ellington AD (2014) Library generation by gene shuffling. Curr Protoc Mol Biol 105, Unit 15 12 Meyer AJ, Ellefson JW, Ellington AD (2014) Library generation by gene shuffling. Curr Protoc Mol Biol 105, Unit 15 12
69.
go back to reference Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391CrossRef Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391CrossRef
70.
go back to reference Zanghellini A (2014) de novo computational enzyme design. Curr Opin Biotechnol 29:132–138CrossRef Zanghellini A (2014) de novo computational enzyme design. Curr Opin Biotechnol 29:132–138CrossRef
71.
go back to reference Woolfson DN et al (2015) De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 33:16–26CrossRef Woolfson DN et al (2015) De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 33:16–26CrossRef
72.
go back to reference Jiang L et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391CrossRef Jiang L et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391CrossRef
73.
go back to reference Rothlisberger D et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195CrossRef Rothlisberger D et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195CrossRef
74.
go back to reference Siegel JB et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313CrossRef Siegel JB et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313CrossRef
75.
go back to reference Mak WS, Siegel JB (2014) Computational enzyme design: transitioning from catalytic proteins to enzymes. Curr Opin Struct Biol 27:87–94CrossRef Mak WS, Siegel JB (2014) Computational enzyme design: transitioning from catalytic proteins to enzymes. Curr Opin Struct Biol 27:87–94CrossRef
76.
go back to reference Arnold U (2009) Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Biotechnol Lett 31:1129–1139CrossRef Arnold U (2009) Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Biotechnol Lett 31:1129–1139CrossRef
77.
go back to reference Chatterjee A et al (2014) A bacterial strain with a unique quadruplet codon specifying non-native amino acids. Chembiochem 15:1782–1786CrossRef Chatterjee A et al (2014) A bacterial strain with a unique quadruplet codon specifying non-native amino acids. Chembiochem 15:1782–1786CrossRef
78.
go back to reference Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRef Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRef
79.
go back to reference Savic N, Schwank G (2016) Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168:15–21CrossRef Savic N, Schwank G (2016) Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168:15–21CrossRef
80.
go back to reference Dodge T (2009) Production of industrial enzymes. In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford Dodge T (2009) Production of industrial enzymes. In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford
81.
go back to reference Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25:1–30CrossRef Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25:1–30CrossRef
82.
go back to reference Gonzalez-Rabade N et al (2011) Production of plant proteases in vivo and in vitro—a review. Biotechnol Adv 29:983–996CrossRef Gonzalez-Rabade N et al (2011) Production of plant proteases in vivo and in vitro—a review. Biotechnol Adv 29:983–996CrossRef
83.
go back to reference Sack M et al (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170CrossRef Sack M et al (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170CrossRef
84.
go back to reference Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283CrossRef Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283CrossRef
85.
go back to reference Kumar D et al (2008) Microbial proteases and application as laundry detergent additive Kumar D et al (2008) Microbial proteases and application as laundry detergent additive
86.
go back to reference Li Q et al (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163CrossRef Li Q et al (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163CrossRef
87.
go back to reference Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523CrossRef Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523CrossRef
88.
go back to reference Outtrup H, Jørgensen ST (2008) The importance of bacillus species in the production of industrial enzymes. In: Berkeley MHR, Logan N, De Vos P (eds) Applications and systematics of bacillus and relatives. Blackwell Science Ltd, Oxford Outtrup H, Jørgensen ST (2008) The importance of bacillus species in the production of industrial enzymes. In: Berkeley MHR, Logan N, De Vos P (eds) Applications and systematics of bacillus and relatives. Blackwell Science Ltd, Oxford
89.
90.
go back to reference Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151CrossRef Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151CrossRef
91.
go back to reference Nidumolu R, Prahalad CK, Rangaswami MR (2009) Why sustainability is now the key driver of innovation. Harv Bus Rev 87(9):57–64 Nidumolu R, Prahalad CK, Rangaswami MR (2009) Why sustainability is now the key driver of innovation. Harv Bus Rev 87(9):57–64
92.
go back to reference Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671 Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671
93.
go back to reference Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1–11CrossRef Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1–11CrossRef
94.
go back to reference de Souza PM et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRef de Souza PM et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRef
95.
go back to reference Gupta R et al (2003) Microbial alpha-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRef Gupta R et al (2003) Microbial alpha-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRef
96.
go back to reference Susumu I et al (2003) Carbohydrate-active enzymes from alkaliphiles. J Appl Glycosci 50:257–262CrossRef Susumu I et al (2003) Carbohydrate-active enzymes from alkaliphiles. J Appl Glycosci 50:257–262CrossRef
97.
go back to reference Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255CrossRef Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255CrossRef
98.
go back to reference de Souza PM, Magalhaes PDE (2010) Application of microbial alpha-amylase in industry—a review. Braz J Microbiol 41:850–861CrossRef de Souza PM, Magalhaes PDE (2010) Application of microbial alpha-amylase in industry—a review. Braz J Microbiol 41:850–861CrossRef
99.
go back to reference Castro A, Castilho L, Freire DG (2011) An overview on advances of amylases production and their use in the production of bioethanol by conventional and non-conventional processes. Biomass Conv Bioref 1:245–255CrossRef Castro A, Castilho L, Freire DG (2011) An overview on advances of amylases production and their use in the production of bioethanol by conventional and non-conventional processes. Biomass Conv Bioref 1:245–255CrossRef
100.
go back to reference van Zyl WH, Bloom M, Viktor MJ (2012) Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol 95:1377–1388CrossRef van Zyl WH, Bloom M, Viktor MJ (2012) Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol 95:1377–1388CrossRef
101.
go back to reference Rausch KD, Belyea RL (2006) The future of coproducts from corn processing. Appl Biochem Biotechnol 128:47–86CrossRef Rausch KD, Belyea RL (2006) The future of coproducts from corn processing. Appl Biochem Biotechnol 128:47–86CrossRef
102.
go back to reference Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300 Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300
103.
go back to reference Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844 Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844
104.
go back to reference Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRef Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRef
105.
go back to reference Soundari SG, Sashi V (2009) Bacterial xylanases. Asian J Microbiol Biotechnol Environ Sci 11:677–682 Soundari SG, Sashi V (2009) Bacterial xylanases. Asian J Microbiol Biotechnol Environ Sci 11:677–682
106.
go back to reference Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4:279–285 Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4:279–285
107.
go back to reference Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
108.
go back to reference Bornscheuer U, Buchholz K, Seibel J (2014) Enzymatic degradation of (ligno)cellulose. Angew Chem Int Ed Engl 53:10876–10893CrossRef Bornscheuer U, Buchholz K, Seibel J (2014) Enzymatic degradation of (ligno)cellulose. Angew Chem Int Ed Engl 53:10876–10893CrossRef
109.
go back to reference Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15CrossRef Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15CrossRef
110.
go back to reference Anuradha P et al (2009) Microbial lipases: a potential tool for industrial applications. J Pure Appl Microbiol 3:301–306 Anuradha P et al (2009) Microbial lipases: a potential tool for industrial applications. J Pure Appl Microbiol 3:301–306
111.
go back to reference De Maria L et al (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300CrossRef De Maria L et al (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300CrossRef
112.
go back to reference Jesper B, David C, PerMunk N (2014) Applications of enzymes in industrial biodiesel production. In: Industrial biocatalysis. Pan Stanford. pp 417–447 Jesper B, David C, PerMunk N (2014) Applications of enzymes in industrial biodiesel production. In: Industrial biocatalysis. Pan Stanford. pp 417–447
113.
go back to reference Dersjant-Li Y et al (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95:878–896CrossRef Dersjant-Li Y et al (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95:878–896CrossRef
114.
go back to reference Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRef Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRef
115.
go back to reference Bankar SB et al (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501CrossRef Bankar SB et al (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501CrossRef
116.
go back to reference Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208CrossRef Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208CrossRef
117.
go back to reference Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRef Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRef
118.
go back to reference Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350CrossRef Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350CrossRef
119.
go back to reference Theriot CM, Grunden AM (2011) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43CrossRef Theriot CM, Grunden AM (2011) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43CrossRef
120.
go back to reference Pedreschi F, Kaack K, Granby K (2008) The effect of asparaginase on acrylamide formation in French fries. Food Chem 109:386–392CrossRef Pedreschi F, Kaack K, Granby K (2008) The effect of asparaginase on acrylamide formation in French fries. Food Chem 109:386–392CrossRef
121.
go back to reference Mathews I et al (2007) Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46:8969–8979CrossRef Mathews I et al (2007) Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46:8969–8979CrossRef
122.
go back to reference DiCosimo R et al (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRef DiCosimo R et al (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRef
123.
go back to reference Takasaki Y, Tanabe O (1969) Enzyme method for converting glucose in glucose syrups to fructose. US3,616,221 Takasaki Y, Tanabe O (1969) Enzyme method for converting glucose in glucose syrups to fructose. US3,616,221
124.
go back to reference Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355CrossRef Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355CrossRef
125.
go back to reference Davis BG, Borer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618–640CrossRef Davis BG, Borer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618–640CrossRef
126.
go back to reference Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505CrossRef Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505CrossRef
127.
go back to reference Tufvesson P et al (2013) Advances in the process development of biocatalytic processes. Org Process Res Dev 17:1233–1238CrossRef Tufvesson P et al (2013) Advances in the process development of biocatalytic processes. Org Process Res Dev 17:1233–1238CrossRef
128.
go back to reference Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451CrossRef Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451CrossRef
129.
go back to reference Greenberg WA (2009) Aldolase enzymes for complex synthesis. In: Whittall J, Sutton PW, Kroutil W (eds) Practical methods for biocatalysis and biotransformations. Wiley, Chichester Greenberg WA (2009) Aldolase enzymes for complex synthesis. In: Whittall J, Sutton PW, Kroutil W (eds) Practical methods for biocatalysis and biotransformations. Wiley, Chichester
130.
go back to reference Guisan JM (2006) Immobiliztion of enzymes and cells. In: Guisan JM (ed) Methods in biotechnology, 2nd edn. Humana Press, Totowa Guisan JM (2006) Immobiliztion of enzymes and cells. In: Guisan JM (ed) Methods in biotechnology, 2nd edn. Humana Press, Totowa
131.
go back to reference Přenosil JE et al (2009) Biocatalysis, 2. Immobilized biocatalysts. In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim Přenosil JE et al (2009) Biocatalysis, 2. Immobilized biocatalysts. In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
132.
go back to reference Cantone S et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276CrossRef Cantone S et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276CrossRef
133.
go back to reference Berendsen WR, Lapin A, Reuss M (2006) Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol Prog 22:1305–1312CrossRef Berendsen WR, Lapin A, Reuss M (2006) Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol Prog 22:1305–1312CrossRef
134.
go back to reference Fernandez-Lafuente R (2010) Lipase from thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B-Enzym 62:197–212CrossRef Fernandez-Lafuente R (2010) Lipase from thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B-Enzym 62:197–212CrossRef
135.
go back to reference Mateo C et al (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans 35:1593–1601CrossRef Mateo C et al (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans 35:1593–1601CrossRef
136.
go back to reference Kim JB, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646CrossRef Kim JB, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646CrossRef
137.
go back to reference Gutierrez-Sanchez C et al (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134:17212–17220CrossRef Gutierrez-Sanchez C et al (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134:17212–17220CrossRef
138.
go back to reference Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRef Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRef
139.
go back to reference Kristensen JB et al (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394CrossRef Kristensen JB et al (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394CrossRef
140.
go back to reference Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice-Hall, Upper Saddle River Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice-Hall, Upper Saddle River
141.
go back to reference Oswald S et al (2008) Industrial applications of whole-cell biocatalysis. Pharm Technol 41:S8–S11 Oswald S et al (2008) Industrial applications of whole-cell biocatalysis. Pharm Technol 41:S8–S11
142.
go back to reference Bechtold M, Panke S (2009) In situ product recovery integrated with biotransformations. Chimia 63:345–348CrossRef Bechtold M, Panke S (2009) In situ product recovery integrated with biotransformations. Chimia 63:345–348CrossRef
143.
go back to reference Kell DB et al (2015) Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 33:237–246CrossRef Kell DB et al (2015) Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 33:237–246CrossRef
144.
go back to reference Bornscheuer UT et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRef Bornscheuer UT et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRef
145.
go back to reference Martinez-Gomez AI et al (2007) Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids. Appl Environ Microbiol 73:1525–1531CrossRef Martinez-Gomez AI et al (2007) Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids. Appl Environ Microbiol 73:1525–1531CrossRef
146.
go back to reference Koskinen AMP, Klibanov AM (1995) Enzymatic reactions in organic media. Springer, Berlin Koskinen AMP, Klibanov AM (1995) Enzymatic reactions in organic media. Springer, Berlin
147.
go back to reference Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRef Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRef
148.
go back to reference Adlercreutz P (2008) Fundamentals of biocatalysis in neat organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Adlercreutz P (2008) Fundamentals of biocatalysis in neat organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
149.
go back to reference Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis, 2nd edn. Wiley-VCH, Verlag GmbH & Co. KGaA, WeinheimCrossRef Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis, 2nd edn. Wiley-VCH, Verlag GmbH & Co. KGaA, WeinheimCrossRef
150.
go back to reference Krieger N et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotech 42:279–286 Krieger N et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotech 42:279–286
151.
go back to reference Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53CrossRef Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53CrossRef
152.
go back to reference van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRef van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRef
153.
go back to reference Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas. Green Chem 9:954–971CrossRef Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas. Green Chem 9:954–971CrossRef
154.
go back to reference Matsuda T, Harada T, Nakamura K (2005) Biocatalysis in supercritical CO2. Curr Org Chem 9:299–315CrossRef Matsuda T, Harada T, Nakamura K (2005) Biocatalysis in supercritical CO2. Curr Org Chem 9:299–315CrossRef
155.
go back to reference van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785CrossRef van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785CrossRef
156.
go back to reference Zhao H (2010) Methods for stabilizing and activating enzynmes in ionic liquids-a review. J Chem Technol Biotechnol 85:891–907CrossRef Zhao H (2010) Methods for stabilizing and activating enzynmes in ionic liquids-a review. J Chem Technol Biotechnol 85:891–907CrossRef
157.
go back to reference Goldfeder M, Fishman A (2014) Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biotechnol 98:545–554CrossRef Goldfeder M, Fishman A (2014) Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biotechnol 98:545–554CrossRef
158.
go back to reference Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22CrossRef Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22CrossRef
159.
go back to reference Goldfeder M et al (2013) Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol 97:1953–1961CrossRef Goldfeder M et al (2013) Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol 97:1953–1961CrossRef
160.
go back to reference Cull SG et al (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69:227–233CrossRef Cull SG et al (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69:227–233CrossRef
161.
go back to reference Dominguez de Maria P, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15:220–225CrossRef Dominguez de Maria P, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15:220–225CrossRef
162.
go back to reference Tufvesson P et al (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11CrossRef Tufvesson P et al (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11CrossRef
163.
go back to reference Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17:310–316CrossRef Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17:310–316CrossRef
164.
go back to reference Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:391–401 Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:391–401
165.
go back to reference Kang MS et al (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98:4379–4387CrossRef Kang MS et al (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98:4379–4387CrossRef
166.
go back to reference Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454CrossRef Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454CrossRef
167.
go back to reference Panova A et al (2007) Chemoenzymatic synthesis of glycolic acid. Adv Synth Catal 349:1462–1474CrossRef Panova A et al (2007) Chemoenzymatic synthesis of glycolic acid. Adv Synth Catal 349:1462–1474CrossRef
168.
go back to reference Volpato G, Rodrigues RC, Fernandez-Lafuente R (2010) Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. Curr Med Chem 17:3855–3873CrossRef Volpato G, Rodrigues RC, Fernandez-Lafuente R (2010) Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. Curr Med Chem 17:3855–3873CrossRef
169.
go back to reference Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311CrossRef Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31:287–311CrossRef
170.
go back to reference Sonke T, Kaptein B, Schoemaker HE (2009) Use of enzymes in the synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry: origins and synthesis of amino acids. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim Sonke T, Kaptein B, Schoemaker HE (2009) Use of enzymes in the synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry: origins and synthesis of amino acids. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim
171.
go back to reference Tosa T et al (1969) Studies on continuous enzyme reactions 6: enzymatic properties of DEAE-Sepharose aminoacylase complex. Agric Biol Chem 33:1047–1056 Tosa T et al (1969) Studies on continuous enzyme reactions 6: enzymatic properties of DEAE-Sepharose aminoacylase complex. Agric Biol Chem 33:1047–1056
172.
go back to reference Patel R (2006) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, Florida Patel R (2006) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, Florida
173.
go back to reference Sutton PW et al (2012) Biocatalysis in the fine chemical and pharmaceutical industries. In: Whithall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations 2. Wiley, Chichester, pp 1–59 Sutton PW et al (2012) Biocatalysis in the fine chemical and pharmaceutical industries. In: Whithall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations 2. Wiley, Chichester, pp 1–59
174.
go back to reference Sekhon BS (2013) Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs. J Modern Med Chem 1:10–36 Sekhon BS (2013) Exploiting the power of stereochemistry in drugs: an overview of racemic and enantiopure drugs. J Modern Med Chem 1:10–36
175.
go back to reference Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327CrossRef Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327CrossRef
176.
go back to reference Erb S (2006) Single-enantiomer drugs poised for further market growth. Pharmaceutical Technology 30:S14–S18 Erb S (2006) Single-enantiomer drugs poised for further market growth. Pharmaceutical Technology 30:S14–S18
177.
go back to reference Meyer HP, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini Rev Org Chem 6:300–306CrossRef Meyer HP, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini Rev Org Chem 6:300–306CrossRef
178.
go back to reference Tao JH, Xu JH (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50CrossRef Tao JH, Xu JH (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50CrossRef
179.
go back to reference Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73CrossRef Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73CrossRef
180.
go back to reference Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today Technol 10:e37–e44CrossRef Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today Technol 10:e37–e44CrossRef
181.
go back to reference Tibrewal N, Tang Y (2014) Biocatalysts for natural product biosynthesis. Annu Rev Chem Biomol Eng 5:347–366CrossRef Tibrewal N, Tang Y (2014) Biocatalysts for natural product biosynthesis. Annu Rev Chem Biomol Eng 5:347–366CrossRef
182.
go back to reference Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379CrossRef Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379CrossRef
183.
go back to reference Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:122–129CrossRef Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:122–129CrossRef
184.
go back to reference Savile CK et al (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef Savile CK et al (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef
185.
go back to reference Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292CrossRef Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292CrossRef
186.
go back to reference Report M (2014) Herbicides market by type, by crop type, by mode of action & geography—trends and forecasts to 2019. MarketsandMarkets, Pune, India Report M (2014) Herbicides market by type, by crop type, by mode of action & geography—trends and forecasts to 2019. MarketsandMarkets, Pune, India
187.
go back to reference Chen X, Kowal P, Wang PG (2000) Large-scale enzymatic synthesis of oligosaccharides. Curr Opin Drug Discov Devel 3:756–763 Chen X, Kowal P, Wang PG (2000) Large-scale enzymatic synthesis of oligosaccharides. Curr Opin Drug Discov Devel 3:756–763
188.
go back to reference Taniguchi H (2008) Biocatalysis-based development of oligosaccharides in Japan. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy. Wiley, Hoboken Taniguchi H (2008) Biocatalysis-based development of oligosaccharides in Japan. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy. Wiley, Hoboken
189.
go back to reference Intanon M et al (2014) Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett 353:89–97CrossRef Intanon M et al (2014) Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett 353:89–97CrossRef
190.
go back to reference Kobata A (2010) Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 86:731–747CrossRef Kobata A (2010) Structures and application of oligosaccharides in human milk. Proc Jpn Acad Ser B Phys Biol Sci 86:731–747CrossRef
191.
go back to reference Holck J et al (2014) Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. N Biotechnol 31:156–165CrossRef Holck J et al (2014) Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. N Biotechnol 31:156–165CrossRef
192.
go back to reference Leemhuis H et al (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, alpha-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272CrossRef Leemhuis H et al (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, alpha-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272CrossRef
193.
go back to reference Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135CrossRef Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135CrossRef
194.
go back to reference Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235 Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235
195.
go back to reference Cheng HN, Gross RA (2008) Polymer biocatalysis and biomaterials: current trends and developments. In: Polymer biocatalysis and biomaterials II. ACS symposium series Cheng HN, Gross RA (2008) Polymer biocatalysis and biomaterials: current trends and developments. In: Polymer biocatalysis and biomaterials II. ACS symposium series
196.
go back to reference McIntosh JA, Farwell CC, Arnold FH (2014) Expanding P450 catalytic reaction space through evolution and engineering. Curr Opin Chem Biol 19:126–134CrossRef McIntosh JA, Farwell CC, Arnold FH (2014) Expanding P450 catalytic reaction space through evolution and engineering. Curr Opin Chem Biol 19:126–134CrossRef
197.
go back to reference Smith DR, Gruschow S, Goss RJ (2013) Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 17:276–283CrossRef Smith DR, Gruschow S, Goss RJ (2013) Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 17:276–283CrossRef
198.
go back to reference Wessjohann LA et al (2013) Alkylating enzymes. Curr Opin Chem Biol 17:229–235CrossRef Wessjohann LA et al (2013) Alkylating enzymes. Curr Opin Chem Biol 17:229–235CrossRef
199.
go back to reference Kohls H, Steffen-Munsberg F, Hohne M (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr Opin Chem Biol 19:180–192CrossRef Kohls H, Steffen-Munsberg F, Hohne M (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr Opin Chem Biol 19:180–192CrossRef
200.
go back to reference Church G, Regis E (2012) Regenisis: how synthetic biology will reinvent nature and ourselves. Basic Books, New York Church G, Regis E (2012) Regenisis: how synthetic biology will reinvent nature and ourselves. Basic Books, New York
201.
go back to reference Wohlgemuth R (2007) Interfacing biocatalysis and organic synthesis. J Chem Technol Biotechnol 82:1055–1062CrossRef Wohlgemuth R (2007) Interfacing biocatalysis and organic synthesis. J Chem Technol Biotechnol 82:1055–1062CrossRef
Metadata
Title
Industrial Enzymes and Biocatalysis
Authors
Adam L. Garske
Gregory Kapp
Joseph C. McAuliffe
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52287-6_28