Skip to main content
Top
Published in: Journal of Iron and Steel Research International 2/2020

23-11-2019 | Original Paper

Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy

Authors: Long Luo, Xuan Bian, Wen-yuan Wu, Ze-ming Yuan, Yong-zhi Li, Ting-ting Zhai, Feng Hu

Published in: Journal of Iron and Steel Research International | Issue 2/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

V48Fe12Ti15Cr25 alloy was prepared using vacuum arc melting and was subsequently annealed for 10 h at 1273 K. The effects of annealing on the hydrogen storage properties and microstructure of the V48Fe12Ti15Cr25 alloys were investigated. The results indicated that the alloy consisted of main body-centered cubic, Ti-rich, and TiFe phases. After annealing, the kinetic properties of the alloy were improved but its hydrogen storage capacity was slightly reduced. The kinetic mechanisms of the hydrogen absorption and desorption of the alloys were studied. The dehydrogenation enthalpy of the alloy was decreased by 2.57 kJ/mol after annealing. Differential scanning calorimetry indicated that the hydride decomposition temperature of the annealed alloy was decreased. The hydrogen desorption activation energies of the as-cast and annealed alloys were calculated to be 79.41 and 71.25 kJ/mol, respectively. The results illustrated that annealing was a beneficial method of improving the kinetic and thermodynamic properties of the hydrogen absorption/desorption of the alloy.
Literature
[1]
go back to reference J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.
[2]
go back to reference Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.
[3]
go back to reference H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972. H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972.
[4]
go back to reference D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58. D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.
[5]
go back to reference D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754. D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754.
[6]
go back to reference M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.
[7]
go back to reference Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770. Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.
[8]
go back to reference M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426. M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426.
[9]
go back to reference X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397. X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397.
[10]
go back to reference X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536. X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536.
[11]
go back to reference X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381. X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381.
[12]
go back to reference X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181. X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181.
[13]
go back to reference X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134. X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134.
[14]
go back to reference X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48. X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.
[15]
go back to reference T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525. T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525.
[16]
go back to reference S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250.
[17]
go back to reference K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68. K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68.
[18]
go back to reference K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487. K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487.
[19]
go back to reference K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375. K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375.
[20]
go back to reference H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551. H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551.
[21]
go back to reference G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121. G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121.
[22]
go back to reference S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266. S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266.
[23]
go back to reference T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532.
[24]
go back to reference U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030. U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030.
[25]
go back to reference X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201. X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201.
[26]
go back to reference X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277.
[27]
go back to reference Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802. Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802.
[28]
go back to reference J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784. J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784.
[29]
go back to reference J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372. J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372.
[30]
go back to reference Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810. Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810.
[31]
go back to reference Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.
[32]
go back to reference S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628. S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628.
[33]
go back to reference A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451. A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451.
[34]
go back to reference X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38. X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38.
[35]
go back to reference M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516.
[36]
go back to reference S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141. S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141.
[37]
go back to reference M. Tsukahara, Mater. Trans. 52 (2011) 68–72. M. Tsukahara, Mater. Trans. 52 (2011) 68–72.
[38]
go back to reference Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133. Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133.
[39]
go back to reference Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308. Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308.
[40]
go back to reference M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549. M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549.
[41]
go back to reference E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470. E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470.
[42]
go back to reference Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432. Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432.
[43]
go back to reference Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431. Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431.
[44]
go back to reference J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964. J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964.
[45]
go back to reference Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289. Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289.
[46]
go back to reference N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287. N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287.
[47]
go back to reference H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736. H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736.
[48]
go back to reference P. Lv, J. Huot, Energy 138 (2017) 375–382. P. Lv, J. Huot, Energy 138 (2017) 375–382.
[49]
go back to reference Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087. Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087.
[50]
go back to reference B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356. B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356.
[51]
go back to reference P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100. P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100.
[52]
go back to reference H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895. H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895.
[53]
go back to reference E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517. E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517.
[54]
go back to reference T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368. T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368.
[55]
go back to reference H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
Metadata
Title
Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy
Authors
Long Luo
Xuan Bian
Wen-yuan Wu
Ze-ming Yuan
Yong-zhi Li
Ting-ting Zhai
Feng Hu
Publication date
23-11-2019
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 2/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-019-00337-4

Other articles of this Issue 2/2020

Journal of Iron and Steel Research International 2/2020 Go to the issue

Premium Partners