Skip to main content
Erschienen in: Journal of Iron and Steel Research International 2/2020

23.11.2019 | Original Paper

Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy

verfasst von: Long Luo, Xuan Bian, Wen-yuan Wu, Ze-ming Yuan, Yong-zhi Li, Ting-ting Zhai, Feng Hu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

V48Fe12Ti15Cr25 alloy was prepared using vacuum arc melting and was subsequently annealed for 10 h at 1273 K. The effects of annealing on the hydrogen storage properties and microstructure of the V48Fe12Ti15Cr25 alloys were investigated. The results indicated that the alloy consisted of main body-centered cubic, Ti-rich, and TiFe phases. After annealing, the kinetic properties of the alloy were improved but its hydrogen storage capacity was slightly reduced. The kinetic mechanisms of the hydrogen absorption and desorption of the alloys were studied. The dehydrogenation enthalpy of the alloy was decreased by 2.57 kJ/mol after annealing. Differential scanning calorimetry indicated that the hydride decomposition temperature of the annealed alloy was decreased. The hydrogen desorption activation energies of the as-cast and annealed alloys were calculated to be 79.41 and 71.25 kJ/mol, respectively. The results illustrated that annealing was a beneficial method of improving the kinetic and thermodynamic properties of the hydrogen absorption/desorption of the alloy.
Literatur
[1]
Zurück zum Zitat J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.
[2]
Zurück zum Zitat Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.
[3]
Zurück zum Zitat H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972. H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972.
[4]
Zurück zum Zitat D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58. D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.
[5]
Zurück zum Zitat D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754. D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754.
[6]
Zurück zum Zitat M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.
[7]
Zurück zum Zitat Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770. Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.
[8]
Zurück zum Zitat M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426. M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426.
[9]
Zurück zum Zitat X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397. X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397.
[10]
Zurück zum Zitat X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536. X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536.
[11]
Zurück zum Zitat X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381. X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381.
[12]
Zurück zum Zitat X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181. X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181.
[13]
Zurück zum Zitat X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134. X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134.
[14]
Zurück zum Zitat X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48. X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.
[15]
Zurück zum Zitat T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525. T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525.
[16]
Zurück zum Zitat S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250.
[17]
Zurück zum Zitat K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68. K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68.
[18]
Zurück zum Zitat K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487. K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487.
[19]
Zurück zum Zitat K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375. K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375.
[20]
Zurück zum Zitat H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551. H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551.
[21]
Zurück zum Zitat G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121. G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121.
[22]
Zurück zum Zitat S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266. S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266.
[23]
Zurück zum Zitat T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532.
[24]
Zurück zum Zitat U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030. U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030.
[25]
Zurück zum Zitat X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201. X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201.
[26]
Zurück zum Zitat X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277.
[27]
Zurück zum Zitat Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802. Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802.
[28]
Zurück zum Zitat J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784. J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784.
[29]
Zurück zum Zitat J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372. J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372.
[30]
Zurück zum Zitat Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810. Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810.
[31]
Zurück zum Zitat Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.
[32]
Zurück zum Zitat S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628. S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628.
[33]
Zurück zum Zitat A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451. A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451.
[34]
Zurück zum Zitat X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38. X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38.
[35]
Zurück zum Zitat M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516.
[36]
Zurück zum Zitat S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141. S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141.
[37]
Zurück zum Zitat M. Tsukahara, Mater. Trans. 52 (2011) 68–72. M. Tsukahara, Mater. Trans. 52 (2011) 68–72.
[38]
Zurück zum Zitat Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133. Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133.
[39]
Zurück zum Zitat Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308. Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308.
[40]
Zurück zum Zitat M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549. M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549.
[41]
Zurück zum Zitat E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470. E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470.
[42]
Zurück zum Zitat Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432. Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432.
[43]
Zurück zum Zitat Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431. Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431.
[44]
Zurück zum Zitat J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964. J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964.
[45]
Zurück zum Zitat Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289. Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289.
[46]
Zurück zum Zitat N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287. N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287.
[47]
Zurück zum Zitat H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736. H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736.
[48]
Zurück zum Zitat P. Lv, J. Huot, Energy 138 (2017) 375–382. P. Lv, J. Huot, Energy 138 (2017) 375–382.
[49]
Zurück zum Zitat Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087. Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087.
[50]
Zurück zum Zitat B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356. B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356.
[51]
Zurück zum Zitat P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100. P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100.
[52]
Zurück zum Zitat H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895. H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895.
[53]
Zurück zum Zitat E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517. E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517.
[54]
Zurück zum Zitat T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368. T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368.
[55]
Zurück zum Zitat H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
Metadaten
Titel
Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy
verfasst von
Long Luo
Xuan Bian
Wen-yuan Wu
Ze-ming Yuan
Yong-zhi Li
Ting-ting Zhai
Feng Hu
Publikationsdatum
23.11.2019
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 2/2020
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-019-00337-4

Weitere Artikel der Ausgabe 2/2020

Journal of Iron and Steel Research International 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.