Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 6/2017

04-10-2017

Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation

Authors: Weiling Wang, Zhaohui Wang, Sen Luo, Cheng Ji, Miaoyong Zhu

Published in: Metallurgical and Materials Transactions B | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A 3D parallel cellular automaton-finite volume method (CA-FVM) model was used to simulate the equiaxed dendritic growth of an Fe-0.82 wt pct C alloy with xy-in-out and xyz-in-out type forced flows and the columnar dendritic growth with y-in-out type forced flow. In addition, the similarities and differences between the results of the 3D and 2D models are discussed and summarized in detail. The capabilities of the 3D and 2D CA-FVM models to predict the dendritic growth of the alloy with forced flow are validated through comparison with the boundary layer correction and Oseen–Ivanstov models, respectively. Because the forced flow can pass around perpendicular arms of the dendrites, the secondary arms at the sides upstream from the perpendicular arms are more developed than those on the upstream side of the upstream arms, especially at higher inlet velocities. In addition, compared to the xy-in-out case, the growth of the downstream arms is less inhibited and the secondary arms are more developed in the xyz-in-out case because of the greater lateral flow around their tips. Compared to the 3D case, the 2D equiaxed dendrites are more asymmetrical and lack secondary arms because of the thicker solute envelope. In the 3D case, the columnar dendrites on the upstream side (left one) are promoted, while the middle and downstream dendrites are inhibited in sequence. However, the sequential inhibition starts on the upstream side in the 2D case. This is mainly because the melt can pass around the upstream branch in 3D space. However, it can only climb over the upstream tip in 2D space. Additionally, the secondary arms show upstream development, which is more significant with increasing inlet velocity. The level of development of the secondary arms is also affected by the decay of the forced flow in the flow direction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 396-406.CrossRef W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 396-406.CrossRef
3.
go back to reference S.Q. Wang, G. Alvarez De Toledo, K. Valimaa and S. Louhenkilpi: ISIJ Int., 2014, vol. 54, pp. 2273-2282.CrossRef S.Q. Wang, G. Alvarez De Toledo, K. Valimaa and S. Louhenkilpi: ISIJ Int., 2014, vol. 54, pp. 2273-2282.CrossRef
5.
6.
go back to reference H.B. Sun and J.Q. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1133-1149.CrossRef H.B. Sun and J.Q. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1133-1149.CrossRef
7.
go back to reference H.P. Liu, M.G. Xu, S.T. Qiu and H. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1657-1675.CrossRef H.P. Liu, M.G. Xu, S.T. Qiu and H. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1657-1675.CrossRef
8.
go back to reference Z.J. Su, J. Chen, K. Nakajima and J.C. He: Steel Res. Int., 2009, vol. 80, pp. 824-833. Z.J. Su, J. Chen, K. Nakajima and J.C. He: Steel Res. Int., 2009, vol. 80, pp. 824-833.
9.
go back to reference H.J. Wu, N. Wei, Y.P. Bao, G.X. Wang, C.P. Xiao and J.J. Liu: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 159-164.CrossRef H.J. Wu, N. Wei, Y.P. Bao, G.X. Wang, C.P. Xiao and J.J. Liu: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 159-164.CrossRef
10.
go back to reference H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-408.CrossRef H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-408.CrossRef
11.
go back to reference N. Shevchenko, O. Roshchupkina, O. Sokolova and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1-8.CrossRef N. Shevchenko, O. Roshchupkina, O. Sokolova and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1-8.CrossRef
12.
13.
go back to reference C.A. Gandin, G. Guillemot, B. Appolaire and N.T. Niane: Mater. Sci. Eng. A, 2003, vol. 342, pp. 44-50.CrossRef C.A. Gandin, G. Guillemot, B. Appolaire and N.T. Niane: Mater. Sci. Eng. A, 2003, vol. 342, pp. 44-50.CrossRef
14.
16.
17.
go back to reference J.Z. Zhao, L. Li and X.F. Zhang: Acta Metall. Sin., 2014, vol. 50, pp. 641-651. J.Z. Zhao, L. Li and X.F. Zhang: Acta Metall. Sin., 2014, vol. 50, pp. 641-651.
18.
go back to reference M.A. Jaafar, D.R. Rousse, S. Gibout and J.-P. Bédécarrats: Renew. Sust. Energ. Rev., 2017, vol. 74, pp. 1064-1079.CrossRef M.A. Jaafar, D.R. Rousse, S. Gibout and J.-P. Bédécarrats: Renew. Sust. Energ. Rev., 2017, vol. 74, pp. 1064-1079.CrossRef
19.
go back to reference D.M. Li, R. Li and P.W. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971-982.CrossRef D.M. Li, R. Li and P.W. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971-982.CrossRef
20.
go back to reference M.F. Zhu, T. Dai, S.Y. Lee and C.P. Hong: Comput. Math. Appl., 2008, vol. 55, pp. 1620-1628.CrossRef M.F. Zhu, T. Dai, S.Y. Lee and C.P. Hong: Comput. Math. Appl., 2008, vol. 55, pp. 1620-1628.CrossRef
21.
go back to reference D. Sun, M. Zhu, S. Pan and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755-1767.CrossRef D. Sun, M. Zhu, S. Pan and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755-1767.CrossRef
22.
go back to reference Z.P. Guo, J. Mi, S. Xiong and P.S. Grant: Metall. Mater. Trans. B, 2013, vol. 44, pp. 924-937.CrossRef Z.P. Guo, J. Mi, S. Xiong and P.S. Grant: Metall. Mater. Trans. B, 2013, vol. 44, pp. 924-937.CrossRef
23.
go back to reference W.L. Wang, S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-148.CrossRef W.L. Wang, S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-148.CrossRef
24.
go back to reference N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-696.CrossRef N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-696.CrossRef
25.
go back to reference Y. Lu, C. Beckermann and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-334.CrossRef Y. Lu, C. Beckermann and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-334.CrossRef
26.
go back to reference C.C. Chen, Y.L. Tsai and C.W. Lan: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 1158-1166.CrossRef C.C. Chen, Y.L. Tsai and C.W. Lan: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 1158-1166.CrossRef
27.
go back to reference L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18. L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18.
28.
go back to reference Y.F. Shi, Q.Y. Xu and B.C. Liu: Rare Metal Mat. Eng., 2013, vol. 42, pp. 700-705. Y.F. Shi, Q.Y. Xu and B.C. Liu: Rare Metal Mat. Eng., 2013, vol. 42, pp. 700-705.
29.
30.
go back to reference X.F. Zhang and X.K. Li: Int. J. Mater. Res., 2015, vol. 106, pp. 1053-1059.CrossRef X.F. Zhang and X.K. Li: Int. J. Mater. Res., 2015, vol. 106, pp. 1053-1059.CrossRef
31.
go back to reference W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1355-1366.CrossRef W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1355-1366.CrossRef
32.
go back to reference X.F. Zhang and J.Z. Zhao: Spec. Cast. Nonferrous Alloys, 2013, vol. 33, pp. 323-327. X.F. Zhang and J.Z. Zhao: Spec. Cast. Nonferrous Alloys, 2013, vol. 33, pp. 323-327.
33.
go back to reference Y. Natsume, D. Takahashi, K. Kawashima, E. Tanigawa and K. Ohsasa: ISIJ Int., 2013, vol. 53, pp. 838-847.CrossRef Y. Natsume, D. Takahashi, K. Kawashima, E. Tanigawa and K. Ohsasa: ISIJ Int., 2013, vol. 53, pp. 838-847.CrossRef
34.
go back to reference W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1339-1354.CrossRef W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1339-1354.CrossRef
35.
go back to reference W.Q. Tao: Numerical Heat Transfer. 2nd ed., Xi’an Jiao Tong University Press, Xi’an, 2001. W.Q. Tao: Numerical Heat Transfer. 2nd ed., Xi’an Jiao Tong University Press, Xi’an, 2001.
37.
38.
Metadata
Title
Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation
Authors
Weiling Wang
Zhaohui Wang
Sen Luo
Cheng Ji
Miaoyong Zhu
Publication date
04-10-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 6/2017
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-1102-x

Other articles of this Issue 6/2017

Metallurgical and Materials Transactions B 6/2017 Go to the issue

Premium Partners