Skip to main content
Top
Published in: Journal of Iron and Steel Research International 7/2022

24-02-2022 | Original Paper

Influence of h-BN particle size on fracture behavior and thermal shock resistance of Al2O3–C refractories

Authors: Zi-xu Ji, Wen-jing Liu, Ning Liao, Ya-wei Li, Tian-bin Zhu

Published in: Journal of Iron and Steel Research International | Issue 7/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

h-BN can be applied in Al2O3–C refractories to substitute graphite due to their similar crystal structure and better resistance to molten steel and oxidation. The effects of h-BN particle size on the mechanical properties and fracture behavior of Al2O3–C refractories were investigated through wedge splitting test and microstructural analyses. The obtained results demonstrated that the addition of larger-sized h-BN was conducive to the growth of in situ formed SiC whiskers, which contributed to the highest flexural strength (42.63 ± 3.10 MPa) of specimen D10. In comparison, the smaller-sized h-BN can induce more crack propagation paths along the interface and within matrix, leading to more tortuous crack propagation paths, and thus the thermal shock-related parameters such as specific fracture energy, characteristic length, and thermal shock resistance were improved. Consequently, the residual strength ratio of Al2O3–C refractories was increased from 35.5% to 42.5% with decreasing the h-BN particle size from 10 to 0.1 μm.
Literature
[1]
go back to reference B.Y. Ma, Q. Zhu, Y. Sun, J.K. Yu, Y. Li, J. Mater. Sci. Technol. 26 (2010) 715–720.CrossRef B.Y. Ma, Q. Zhu, Y. Sun, J.K. Yu, Y. Li, J. Mater. Sci. Technol. 26 (2010) 715–720.CrossRef
[2]
go back to reference X.M. Ren, B.Y. Ma, S.M. Li, H.M. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.CrossRef X.M. Ren, B.Y. Ma, S.M. Li, H.M. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.CrossRef
[4]
go back to reference X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.CrossRef X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.CrossRef
[6]
go back to reference M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, H.R. Rezaie, Ceram. Int. 35 (2009) 861–868.CrossRef M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, H.R. Rezaie, Ceram. Int. 35 (2009) 861–868.CrossRef
[7]
go back to reference L. Musante, V. Muñoz, M.H. Labadie, A.G. Tomba Martinez, Ceram. Int. 37 (2011) 1473–1483. L. Musante, V. Muñoz, M.H. Labadie, A.G. Tomba Martinez, Ceram. Int. 37 (2011) 1473–1483.
[8]
[9]
[10]
go back to reference B.Y. Ma, Y.W. Li, Q. Zhu, G.Q. Liu, J.K. Yu, Refract. Ind. Ceram. 56 (2015) 26–33. B.Y. Ma, Y.W. Li, Q. Zhu, G.Q. Liu, J.K. Yu, Refract. Ind. Ceram. 56 (2015) 26–33.
[11]
go back to reference N. Liao, Y.W. Li, S.B. Sang, F. Huang, J. Liu, Y.X. Li, Z.J. Lin, J. Chinese Ceram. Soc. 42 (2014) 1591–1599. N. Liao, Y.W. Li, S.B. Sang, F. Huang, J. Liu, Y.X. Li, Z.J. Lin, J. Chinese Ceram. Soc. 42 (2014) 1591–1599.
[12]
go back to reference M. Luo, Y.W. Li, S.L. Jin, S.B. Sang, L. Zhao, Y. Li, Mater. Sci. Eng. A 548 (2012) 134–141. M. Luo, Y.W. Li, S.L. Jin, S.B. Sang, L. Zhao, Y. Li, Mater. Sci. Eng. A 548 (2012) 134–141.
[13]
go back to reference Q.H. Wang, Y.W. Li, M. Luo, S.B. Sang, T.B. Zhu, L. Zhao, Ceram. Int. 40 (2014) 163–172.CrossRef Q.H. Wang, Y.W. Li, M. Luo, S.B. Sang, T.B. Zhu, L. Zhao, Ceram. Int. 40 (2014) 163–172.CrossRef
[14]
go back to reference Q.H. Wang, Y.W. Li, S.B. Sang, S.L. Jin, J. Alloy. Compd. 645 (2015) 388–397.CrossRef Q.H. Wang, Y.W. Li, S.B. Sang, S.L. Jin, J. Alloy. Compd. 645 (2015) 388–397.CrossRef
[15]
go back to reference N. Liao, Y.W. Li, Q.H. Wang, T.B. Zhu, S.L. Jin, S.B. Sang, D.C. Jia, Ceram. Int. 43 (2017) 14380–14388.CrossRef N. Liao, Y.W. Li, Q.H. Wang, T.B. Zhu, S.L. Jin, S.B. Sang, D.C. Jia, Ceram. Int. 43 (2017) 14380–14388.CrossRef
[16]
go back to reference N. Liao, Y.W. Li, S.L. Jin, S.B. Sang, G.F. Liu, Mater. Sci. Eng. A 698 (2017) 80–87.CrossRef N. Liao, Y.W. Li, S.L. Jin, S.B. Sang, G.F. Liu, Mater. Sci. Eng. A 698 (2017) 80–87.CrossRef
[17]
go back to reference N. Liao, Y.W. Li, S.L. Jin, Y.B. Xu, S.B. Sang, Z.J. Deng, V. Pandolfelli, J. Am. Ceram. Soc. 100 (2017) 443–450.CrossRef N. Liao, Y.W. Li, S.L. Jin, Y.B. Xu, S.B. Sang, Z.J. Deng, V. Pandolfelli, J. Am. Ceram. Soc. 100 (2017) 443–450.CrossRef
[18]
go back to reference M. Luo, Y.W. Li, S.B. Sang, L. Zhao, S.L. Jin, Y.B. Li, Mater. Sci. Eng. A 558 (2012) 533–542.CrossRef M. Luo, Y.W. Li, S.B. Sang, L. Zhao, S.L. Jin, Y.B. Li, Mater. Sci. Eng. A 558 (2012) 533–542.CrossRef
[19]
go back to reference N. Liao, Y.W. Li, S.L. Jin, S.B. Sang, H. Harmuth, J. Eur. Ceram. Soc. 36 (2016) 867–874.CrossRef N. Liao, Y.W. Li, S.L. Jin, S.B. Sang, H. Harmuth, J. Eur. Ceram. Soc. 36 (2016) 867–874.CrossRef
[20]
go back to reference X.M. Duan, M.R. Wang, D.C. Jia, N. Jing, Z.L. Wu, Z.H. Yang, Z. Tian, S.J. Wang, P.G. He, Y.J. Wang, Y. Zhou, Mater. Sci. Eng. A 607 (2014) 38–43.CrossRef X.M. Duan, M.R. Wang, D.C. Jia, N. Jing, Z.L. Wu, Z.H. Yang, Z. Tian, S.J. Wang, P.G. He, Y.J. Wang, Y. Zhou, Mater. Sci. Eng. A 607 (2014) 38–43.CrossRef
[21]
go back to reference X.M. Duan, Z.H. Yang, L. Chen, Z. Tian, D.L. Cai, Y.J. Wang, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 36 (2016) 3725–3737.CrossRef X.M. Duan, Z.H. Yang, L. Chen, Z. Tian, D.L. Cai, Y.J. Wang, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 36 (2016) 3725–3737.CrossRef
[22]
go back to reference Z. Zhang, X.M. Duan, B. Qiu, Z.H. Yang, D.L. Cai, P.G. He, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 39 (2019) 1788–1795.CrossRef Z. Zhang, X.M. Duan, B. Qiu, Z.H. Yang, D.L. Cai, P.G. He, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 39 (2019) 1788–1795.CrossRef
[23]
go back to reference B. Niu, D.L. Cai, Z.H. Yang, X.M. Duan, Y.S. Sun, H.L. Li, W.J. Duan, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 39 (2019) 539–546.CrossRef B. Niu, D.L. Cai, Z.H. Yang, X.M. Duan, Y.S. Sun, H.L. Li, W.J. Duan, D.C. Jia, Y. Zhou, J. Eur. Ceram. Soc. 39 (2019) 539–546.CrossRef
[24]
go back to reference A. Kumar, V. Thapliyal, J. Smith, Int. J. Appl. Ceram. Technol. 11 (2015) 1001–1011.CrossRef A. Kumar, V. Thapliyal, J. Smith, Int. J. Appl. Ceram. Technol. 11 (2015) 1001–1011.CrossRef
[25]
[26]
go back to reference G.J. Zhang, J.F. Yang, M. Ando, T. Ohji, J. Eur. Ceram. Soc. 22 (2002) 2551–2554.CrossRef G.J. Zhang, J.F. Yang, M. Ando, T. Ohji, J. Eur. Ceram. Soc. 22 (2002) 2551–2554.CrossRef
[27]
[28]
[29]
go back to reference L.Y. Xiang, L.F. Cheng, L. Shi, X.W. Yin, L.T. Zhang, J. Alloy. Compd. 638 (2015) 261–266.CrossRef L.Y. Xiang, L.F. Cheng, L. Shi, X.W. Yin, L.T. Zhang, J. Alloy. Compd. 638 (2015) 261–266.CrossRef
[30]
[31]
[32]
go back to reference Y. Hou, P. Hu, X.H. Zhang, K.X. Gui, Int. J. Refract. Met. Hard Mater. 41 (2013) 133–137.CrossRef Y. Hou, P. Hu, X.H. Zhang, K.X. Gui, Int. J. Refract. Met. Hard Mater. 41 (2013) 133–137.CrossRef
[33]
go back to reference X.C. Liu, C.W. Wei, L. Feng, J.Y. Niu, Z.Z. Yang, Ceram. Int. 43 (2017) 6612–6617.CrossRef X.C. Liu, C.W. Wei, L. Feng, J.Y. Niu, Z.Z. Yang, Ceram. Int. 43 (2017) 6612–6617.CrossRef
[34]
go back to reference Z.X. Ji, N. Liao, Y.W. Li, M. Nath, T.B. Zhu, L.P. Pan, Y.J. Dai, Ceram. Int. 47 (2021) 29900–29907.CrossRef Z.X. Ji, N. Liao, Y.W. Li, M. Nath, T.B. Zhu, L.P. Pan, Y.J. Dai, Ceram. Int. 47 (2021) 29900–29907.CrossRef
[36]
go back to reference R. Grasset-Bourdel, A. Alzina, M. Huger, T. Chotard, R. Emler, D. Gruber, H. Harmuth, J. Eur. Ceram. Soc. 33 (2013) 913–923.CrossRef R. Grasset-Bourdel, A. Alzina, M. Huger, T. Chotard, R. Emler, D. Gruber, H. Harmuth, J. Eur. Ceram. Soc. 33 (2013) 913–923.CrossRef
[37]
go back to reference H. Harmuth, K. Rieder, M. Krobath, E. Tschegg, Mater. Sci. Eng. A 214 (1996) 53–61.CrossRef H. Harmuth, K. Rieder, M. Krobath, E. Tschegg, Mater. Sci. Eng. A 214 (1996) 53–61.CrossRef
[38]
go back to reference E.K. Tschegg, K.T. Fendt, C. Manhart, H. Harmuth, Eng. Fract. Mech. 76 (2009) 2249–2259.CrossRef E.K. Tschegg, K.T. Fendt, C. Manhart, H. Harmuth, Eng. Fract. Mech. 76 (2009) 2249–2259.CrossRef
[39]
[40]
[41]
go back to reference Y.J. Dai, Y.W. Li, S.L. Jin, H. Harmuth, Y. Wen, X. Xu, J. Eur. Ceram. Soc. 40 (2020) 181–191.CrossRef Y.J. Dai, Y.W. Li, S.L. Jin, H. Harmuth, Y. Wen, X. Xu, J. Eur. Ceram. Soc. 40 (2020) 181–191.CrossRef
[42]
go back to reference D.R. Larson, J.A. Coppola, D.P.H. Hasselman, J. Am. Ceram. Soc. 57 (1974) 417–421.CrossRef D.R. Larson, J.A. Coppola, D.P.H. Hasselman, J. Am. Ceram. Soc. 57 (1974) 417–421.CrossRef
[43]
go back to reference T.B. Zhu, Y.W. Li, S.B. Sang, Z.P. Xie, J. Eur. Ceram. Soc. 38 (2018) 2179–2185.CrossRef T.B. Zhu, Y.W. Li, S.B. Sang, Z.P. Xie, J. Eur. Ceram. Soc. 38 (2018) 2179–2185.CrossRef
Metadata
Title
Influence of h-BN particle size on fracture behavior and thermal shock resistance of Al2O3–C refractories
Authors
Zi-xu Ji
Wen-jing Liu
Ning Liao
Ya-wei Li
Tian-bin Zhu
Publication date
24-02-2022
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 7/2022
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00750-2

Other articles of this Issue 7/2022

Journal of Iron and Steel Research International 7/2022 Go to the issue

Premium Partners