Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 16/2020

20-07-2020

Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates

Authors: Saeed Moghaddam, Farida Orapunt, Mario Noël, Joanne C. Zwinkels, Jean-Marc Baribeau, David J. Lockwood, Stephen K. O’Leary

Published in: Journal of Materials Science: Materials in Electronics | Issue 16/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Following up on some recent work that has been presented (Orapunt et al., J Appl Phys 119:065702-1-12, 2016), we report on the optical properties associated with a unique form of thin-film silicon that has been deposited onto optical quality fused quartz substrates through ultra-high-vacuum evaporation. For the purposes of this particular analysis, we focus on how the growth temperature influences the spectral dependence of the optical functions associated with these thin silicon films, for growth temperatures ranging from 98 to 572 °C. Through measurements of the specular reflectance spectrum at near normal incidence and the regular transmittance spectrum at normal incidence, we determine the spectral dependence of the refractive index, the extinction coefficient, the real and imaginary parts of the dielectric function, and the optical absorption coefficient for the 11 thin silicon films considered in this analysis. We find that generally the refractive index increases in response to increases in the growth temperature. The optical absorption spectral dependence is also observed to exhibit a fundamental transition in its functional behavior accompanying increases in the growth temperature. Some details, related to recently developed methods employed for the determination of the optical functions from measurements of the reflectance and transmittance spectra, are provided as a complement to this analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
By “lattice” we are referring to the manner in which the atoms are distributed throughout the material.
 
2
The suitability of these thin silicon films for photovoltaic device applications has yet to be fully probed. While the electron spin resonance work of Akbari-Sharbaf et al. [38] and the carrier dynamic work of Titova et al. [39] has shown that similarly prepared thin films of silicon are promising for photovoltaic device applications, light soaking experiments, and other photovoltaic-specific analyzes, have yet to be pursued. These will have to be performed in the future if the photovoltaic potential of this material is to be realized.
 
3
The apparently anomalous behavior observed in the reflectance spectra, where the measured reflectance of the thin silicon film coating is less than that associated with the bare optical quality fused quartz substrate, can be explained if the optical thickness of the thin-films at these particular wavelengths is such that destructive interference occurs. In this situation, the thin-film behaves like an anti-reflection coating, where the reflectance is diminished and the throughput (transmittance) is increased compared with the bare optical quality fused quartz substrate.
 
4
There is evidence to suggest that there are inhomogeneities that occur in the optical properties as one goes deeper into a given thin-film, these inhomogeneities reflecting the structural inhomogeneities that are present. In effect, a given thin-film may be thought of as being comprised of a stack of thin-film layers, each layer within such a stack having its own optical properties. These differences become magnified the thicker the thin-film, the thin-films grown at 98 \(^{\circ }\)C exhibiting large differences in their thicknesses when contrasted with those grown at the other growth temperatures; recall Table 1.
 
5
In contrast, for the case of PD-a-Si, O’Leary [55] demonstrated that there is a fundamental discontinuity in the optical absorption spectrum as the disorderless limit is approached.
 
Literature
1.
go back to reference A. Terakawa, Sol. Energy Mater. Sol. Cells 119, 204–208 (2013) A. Terakawa, Sol. Energy Mater. Sol. Cells 119, 204–208 (2013)
2.
go back to reference H.W. van Zeijl, ECS Trans. 61, 191–206 (2014) H.W. van Zeijl, ECS Trans. 61, 191–206 (2014)
3.
4.
go back to reference M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970) M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970)
5.
go back to reference W.E. Spear, P.G. Le Comber, Solid State Commun. 17, 1193–1196 (1975) W.E. Spear, P.G. Le Comber, Solid State Commun. 17, 1193–1196 (1975)
6.
go back to reference M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977) M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977)
7.
go back to reference E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979) E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979)
8.
go back to reference J. Kakalios, R.A. Street, W.B. Jackson, Phys. Rev. Lett. 59, 1037–1040 (1987) J. Kakalios, R.A. Street, W.B. Jackson, Phys. Rev. Lett. 59, 1037–1040 (1987)
9.
go back to reference R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991) R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)
10.
go back to reference C. Weber, J.R. Abelson, IEEE Trans. Electron Devices 45, 447–452 (1998) C. Weber, J.R. Abelson, IEEE Trans. Electron Devices 45, 447–452 (1998)
11.
go back to reference R.A. Street (ed.), Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000) R.A. Street (ed.), Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000)
12.
go back to reference J. Deng, C.R. Wronski, J. Appl. Phys. 98, 024509-1-10 (2005) J. Deng, C.R. Wronski, J. Appl. Phys. 98, 024509-1-10 (2005)
13.
go back to reference C. Longeaud, F. Ventosinos, J.A. Schmidt, J. Appl. Phys. 112, 023709-1-10 (2012) C. Longeaud, F. Ventosinos, J.A. Schmidt, J. Appl. Phys. 112, 023709-1-10 (2012)
14.
go back to reference R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968) R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968)
15.
go back to reference D. Beaglehole, M. Zavetova, J. Non-Cryst. Solids 4, 272–278 (1970) D. Beaglehole, M. Zavetova, J. Non-Cryst. Solids 4, 272–278 (1970)
16.
go back to reference J.E. Fischer, T.M. Donovan, J. Non-Cryst. Solids 8–10, 202–208 (1972) J.E. Fischer, T.M. Donovan, J. Non-Cryst. Solids 8–10, 202–208 (1972)
17.
go back to reference S.K. Bahl, S.M. Bhagat, J. Non-Cryst. Solids 17, 409–427 (1975) S.K. Bahl, S.M. Bhagat, J. Non-Cryst. Solids 17, 409–427 (1975)
18.
go back to reference G.K.M. Thutupalli, S.G. Tomlin, J. Phys. C 10, 467–477 (1977) G.K.M. Thutupalli, S.G. Tomlin, J. Phys. C 10, 467–477 (1977)
19.
go back to reference M.H. Brodsky, R.S. Title, Phys. Rev. Lett. 23, 581–585 (1969) M.H. Brodsky, R.S. Title, Phys. Rev. Lett. 23, 581–585 (1969)
20.
go back to reference D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671–673 (1976) D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671–673 (1976)
21.
go back to reference P.G. Le Comber, W.E. Spear, A. Ghaith, Electron. Lett. 15, 179–181 (1979) P.G. Le Comber, W.E. Spear, A. Ghaith, Electron. Lett. 15, 179–181 (1979)
22.
go back to reference A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, A.J. Hughes, Appl. Phys. 24, 357–362 (1981) A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, A.J. Hughes, Appl. Phys. 24, 357–362 (1981)
23.
go back to reference C.C. Tsai, J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, M.J. Thompson, J. Non-Cryst. Solids 59 & 60, 731–734 (1983) C.C. Tsai, J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, M.J. Thompson, J. Non-Cryst. Solids 59 & 60, 731–734 (1983)
24.
go back to reference C.R. Wronski, Sol. Energy Mater. Sol. Cells 41/42, 427–439 (1996) C.R. Wronski, Sol. Energy Mater. Sol. Cells 41/42, 427–439 (1996)
25.
go back to reference Z. Remes̆, M. Vanĕc̆ek, P. Torres, U. Kroll, A.H. Mahan, R.S. Crandall, J. Non-Cryst. Solids 227—-230, 876–879 (1998) Z. Remes̆, M. Vanĕc̆ek, P. Torres, U. Kroll, A.H. Mahan, R.S. Crandall, J. Non-Cryst. Solids 227—-230, 876–879 (1998)
26.
go back to reference F. Gaspari, L.S. Sidhu, S.K. O’Leary, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 420, 375–380 (1996) F. Gaspari, L.S. Sidhu, S.K. O’Leary, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 420, 375–380 (1996)
27.
go back to reference D.A. Papaconstantopoulos, E.N. Economou, Phys. Rev. B 24, 7233–7246 (1981) D.A. Papaconstantopoulos, E.N. Economou, Phys. Rev. B 24, 7233–7246 (1981)
28.
go back to reference D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292–294 (1977) D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292–294 (1977)
29.
go back to reference R. Biswas, B.C. Pan, Appl. Phys. Lett. 72, 371–373 (1998) R. Biswas, B.C. Pan, Appl. Phys. Lett. 72, 371–373 (1998)
30.
go back to reference R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512–2515 (1999) R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512–2515 (1999)
31.
go back to reference B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001) B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001)
32.
go back to reference S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001) S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001)
33.
go back to reference D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002) D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002)
34.
go back to reference J.-M. Baribeau, X. Wu, D.J. Lockwood, L. Tay, G.I. Sproule, J. Vac. Sci. Technol. B 22, 1479–1483 (2004) J.-M. Baribeau, X. Wu, D.J. Lockwood, L. Tay, G.I. Sproule, J. Vac. Sci. Technol. B 22, 1479–1483 (2004)
35.
go back to reference L. Tay, D.J. Lockwood, J.-M. Baribeau, X. Wu, G.I. Sproule, J. Vac. Sci. Technol. A 22, 943–947 (2004) L. Tay, D.J. Lockwood, J.-M. Baribeau, X. Wu, G.I. Sproule, J. Vac. Sci. Technol. A 22, 943–947 (2004)
36.
go back to reference L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006) L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006)
37.
go back to reference F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016) F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016)
38.
go back to reference A. Akbari-Sharbaf, J.-M. Baribeau, X. Wu, D.J. Lockwood, G. Fanchini, Thin Solid Films 527, 38–44 (2013) A. Akbari-Sharbaf, J.-M. Baribeau, X. Wu, D.J. Lockwood, G. Fanchini, Thin Solid Films 527, 38–44 (2013)
39.
go back to reference L.V. Titova, T.L. Cocker, S. Xu, J.-M. Baribeau, X. Wu, D.J. Lockwood, F.A. Hegmann, Semicond. Sci. Technol. 31, 105017-1-8 (2016) L.V. Titova, T.L. Cocker, S. Xu, J.-M. Baribeau, X. Wu, D.J. Lockwood, F.A. Hegmann, Semicond. Sci. Technol. 31, 105017-1-8 (2016)
40.
go back to reference K.J. Schmidt, Y. Lin, M. Beaudoin, G. Xia, S.K. O’Leary, G. Yue, B. Yan, Can. J. Phys. 92, 857–861 (2014) K.J. Schmidt, Y. Lin, M. Beaudoin, G. Xia, S.K. O’Leary, G. Yue, B. Yan, Can. J. Phys. 92, 857–861 (2014)
41.
go back to reference R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143–180 (2003) R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143–180 (2003)
42.
go back to reference G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227–243 (1980) G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227–243 (1980)
43.
go back to reference O.S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955) O.S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955)
44.
go back to reference R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852–863 (1972) R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852–863 (1972)
45.
go back to reference S.G. Tomlin, J. Phys. D 1, 1667–1671 (1968) S.G. Tomlin, J. Phys. D 1, 1667–1671 (1968)
46.
go back to reference E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 749–763 E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 749–763
47.
go back to reference C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985–987 (1983) C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985–987 (1983)
48.
go back to reference M.M. El-Nahass, H.S. Soliman, N.El. Kadry, A.Y. Morsy, S. Yaghmour, J. Mater. Sci. Lett. 7, 1050–1053 (1988) M.M. El-Nahass, H.S. Soliman, N.El. Kadry, A.Y. Morsy, S. Yaghmour, J. Mater. Sci. Lett. 7, 1050–1053 (1988)
49.
go back to reference R. Sridhar, R. Venkattasubbiah, J. Majhi, R. Ramachandran, J. Non-Cryst. Solids 119, 331–341 (1990) R. Sridhar, R. Venkattasubbiah, J. Majhi, R. Ramachandran, J. Non-Cryst. Solids 119, 331–341 (1990)
50.
go back to reference J. Müllerová, L. Prus̆áková, M. Netrvalová, V. Vavrun̆ková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010) J. Müllerová, L. Prus̆áková, M. Netrvalová, V. Vavrun̆ková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010)
51.
go back to reference A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986) A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986)
52.
go back to reference R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982) R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982)
53.
go back to reference S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005) S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005)
54.
go back to reference G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981) G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981)
55.
go back to reference S.K. O’Leary, Appl. Phys. Lett. 72, 1332–1334 (1998) S.K. O’Leary, Appl. Phys. Lett. 72, 1332–1334 (1998)
Metadata
Title
Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates
Authors
Saeed Moghaddam
Farida Orapunt
Mario Noël
Joanne C. Zwinkels
Jean-Marc Baribeau
David J. Lockwood
Stephen K. O’Leary
Publication date
20-07-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 16/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03870-1

Other articles of this Issue 16/2020

Journal of Materials Science: Materials in Electronics 16/2020 Go to the issue