Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2018

10-08-2018

Influence of Thermomechanically Controlled Processing on Microstructure and Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel

Authors: Enyinnaya Ohaeri, Joseph Omale, Ahmed Tiamiyu, K. M. Mostafijur Rahman, Jerzy Szpunar

Published in: Journal of Materials Engineering and Performance | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of different thermomechanical controlled processing routes on susceptibility of X70 pipeline steel to hydrogen induced cracking (HIC) have been studied. Two X70 pipeline steel specimens labelled WE and WD were investigated. These specimens have the same chemical composition, but they were processed with seperate thermomechanical treatments parameters. Microstructural examinations showed that WE consists of mainly acicular ferrite and polygonal ferrite, while WD consists of acicular ferrite and bainitic ferrite. After subjecting both specimens to hydrogen charging for 12 and 16 h in 0.2 M sulfuric acid and 3 g/L ammonium thiocyanate, early onset of HIC was observed in specimen WD. Post-hydrogen charging microstructural evaluation showed the nucleation of discontinuous cracks in WD after 12 h of charging. However, extended charging for up to 16 h resulted in HIC along the mid-thickness region of both specimens. Hydrogen diffusion across specimen WE was better than that of specimen WD. Therefore, hydrogen trapping at grain boundaries, banded deformed grains, inclusions and secondary phases such as martensite and cementite aided initiation and propagation of HIC in specimens. Nevertheless, the adverse effect of these features on HIC risks was more prominent in specimen WD compared to specimen WE. The Vickers microhardness values measured in WD (349.6 HV) and WE (307.4 HV) suggest that WD is harder than WE; and higher kernel average misorientation of 0.66° in WD than in WE (0.58°) shows higher dislocation density in WD. The results from slow strain rate tensile test confirmed that specimen WD was stronger and more susceptible to HIC than specimen WE. It was concluded that microstructural phases developed during thermomechanical processing improved strength in WD at the expense of its crack resistance, while WE with lower strength showed more ductility and higher resistance to HIC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Sadeghi Meresht, T. Shahrabi Farahani, and J. Neshati, Failure Analysis of Stress Corrosion Cracking Occurred in a Gas Transmission Steel Pipeline, Eng. Fail. Anal., 2011, 18(3), p 963–970CrossRef E. Sadeghi Meresht, T. Shahrabi Farahani, and J. Neshati, Failure Analysis of Stress Corrosion Cracking Occurred in a Gas Transmission Steel Pipeline, Eng. Fail. Anal., 2011, 18(3), p 963–970CrossRef
2.
go back to reference Y. Baik and Y. Choi, The Effects of Crystallographic Texture and Hydrogen on Sulfide Stress Corrosion Cracking Behavior of a Steel Using Slow Strain Rate Test Method, Phys. Met. Metallogr., 2014, 115(13), p 1318–1325CrossRef Y. Baik and Y. Choi, The Effects of Crystallographic Texture and Hydrogen on Sulfide Stress Corrosion Cracking Behavior of a Steel Using Slow Strain Rate Test Method, Phys. Met. Metallogr., 2014, 115(13), p 1318–1325CrossRef
3.
go back to reference J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, The Effect of Hydrogen Concentration on Fracture of Pipeline Steels in Presence of a Notch, Eng. Fract. Mech., 2011, 78(2), p 364–373CrossRef J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, The Effect of Hydrogen Concentration on Fracture of Pipeline Steels in Presence of a Notch, Eng. Fract. Mech., 2011, 78(2), p 364–373CrossRef
4.
go back to reference J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, Sensitivity of Pipelines with Steel API, X52 to Hydrogen Embrittlement, Int. J. Hydrogen Energy, 2008, 33(24), p 7630–7641CrossRef J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage, Sensitivity of Pipelines with Steel API, X52 to Hydrogen Embrittlement, Int. J. Hydrogen Energy, 2008, 33(24), p 7630–7641CrossRef
5.
go back to reference C. Bosch, T. Haase, S. Mannesmann, and F. Gmbh, Effect of NACE TM0284 Test Modifications on the HIC Performance of Large Diameter Pipes, in NACE Corrosion Conference & Expo, 2008, pp. 1–13. C. Bosch, T. Haase, S. Mannesmann, and F. Gmbh, Effect of NACE TM0284 Test Modifications on the HIC Performance of Large Diameter Pipes, in NACE Corrosion Conference & Expo, 2008, pp. 1–13.
6.
go back to reference A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma, Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels, Int. J. Hydrog. Energy, 2013, 38(5), p 2544–2556CrossRef A.J. Haq, K. Muzaka, D.P. Dunne, A. Calka, and E.V. Pereloma, Effect of Microstructure and Composition on Hydrogen Permeation in X70 Pipeline Steels, Int. J. Hydrog. Energy, 2013, 38(5), p 2544–2556CrossRef
7.
go back to reference C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrogen Energy, 2009, 34(24), p 9879–9884CrossRef C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrogen Energy, 2009, 34(24), p 9879–9884CrossRef
8.
go back to reference M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi, Hydrogen Induced Cracking Susceptibility in Different Layers of a Hot Rolled X70 Pipeline Steel, Int. J. Hydrogen Energy, 2013, 38(31), p 13831–13841CrossRef M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi, Hydrogen Induced Cracking Susceptibility in Different Layers of a Hot Rolled X70 Pipeline Steel, Int. J. Hydrogen Energy, 2013, 38(31), p 13831–13841CrossRef
9.
go back to reference S. Lynch, Hydrogen Embrittlement Phenomena and Mechanisms, Corros. Rev., 2012, 30(3–4), p 105–123 S. Lynch, Hydrogen Embrittlement Phenomena and Mechanisms, Corros. Rev., 2012, 30(3–4), p 105–123
10.
go back to reference R. Srinivasan and T. Neeraj, Hydrogen Embrittlement of Ferritic Steels: Deformation and Failure Mechanisms and Challenges in the Oil and Gas Industry, Miner. Met. Mater. Soc., 2014, 66(8), p 1377–1382CrossRef R. Srinivasan and T. Neeraj, Hydrogen Embrittlement of Ferritic Steels: Deformation and Failure Mechanisms and Challenges in the Oil and Gas Industry, Miner. Met. Mater. Soc., 2014, 66(8), p 1377–1382CrossRef
11.
go back to reference S.P. Lynch, Progress towards Understanding Mechanisms of Hydrogen Embrittlement and Stress Corrosion Cracking, in NACE Corrosion, 2007, pp. 1–10. S.P. Lynch, Progress towards Understanding Mechanisms of Hydrogen Embrittlement and Stress Corrosion Cracking, in NACE Corrosion, 2007, pp. 1–10.
12.
go back to reference F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 527, p 6997–7001CrossRef F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 527, p 6997–7001CrossRef
13.
go back to reference G.T. Park, S.U. Koh, G.H. Jung, and Y.K. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 50, p 1865–1871CrossRef G.T. Park, S.U. Koh, G.H. Jung, and Y.K. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 50, p 1865–1871CrossRef
14.
go back to reference V.P. Afanas’ev, T.S. Dolotova, V. V Galtykhina, V.M. Yankovskii, E.A. Solomadina, and E.D. Mokhova, The Influence of Thermomechanical Working Conditions on the Resistance of Low Carbon Steel to Sulfide Cracking, Sov. Mater. Sci. Transl. from Fiz. Mekhanika Mater., 1981, 16(6), p 45–48 V.P. Afanas’ev, T.S. Dolotova, V. V Galtykhina, V.M. Yankovskii, E.A. Solomadina, and E.D. Mokhova, The Influence of Thermomechanical Working Conditions on the Resistance of Low Carbon Steel to Sulfide Cracking, Sov. Mater. Sci. Transl. from Fiz. Mekhanika Mater., 1981, 16(6), p 45–48
15.
go back to reference R. Ghosh, A. Venugopal, P. Sankaravelayudham, R. Panda, S.C. Sharma, K.M. George, and V.S. Raja, Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy, J. Mater. Eng. Perform., 2014, 24(2), p 545–555CrossRef R. Ghosh, A. Venugopal, P. Sankaravelayudham, R. Panda, S.C. Sharma, K.M. George, and V.S. Raja, Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy, J. Mater. Eng. Perform., 2014, 24(2), p 545–555CrossRef
16.
go back to reference M.A.V. Devanathan and Z. Stachurski, The Adsorption and Diffusion of Electrolytic Hydrogen in Palladium, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1962, p 90–102. M.A.V. Devanathan and Z. Stachurski, The Adsorption and Diffusion of Electrolytic Hydrogen in Palladium, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1962, p 90–102.
17.
go back to reference J.P.D. Carvalho, E.O. Vilar, and B.A. Araújo, A Critical Review and Experimental Analysis of the Equation Recommended by ASTM G148-97 and ISO 17081: 2004 for the Calculation of the Hydrogen Diffusivity in Metals and Alloys, Int. J. Hydrogen Energy, 2017, 42(1), p 681–688CrossRef J.P.D. Carvalho, E.O. Vilar, and B.A. Araújo, A Critical Review and Experimental Analysis of the Equation Recommended by ASTM G148-97 and ISO 17081: 2004 for the Calculation of the Hydrogen Diffusivity in Metals and Alloys, Int. J. Hydrogen Energy, 2017, 42(1), p 681–688CrossRef
18.
go back to reference F. Thebault, S. Frappart, L. Delattre, H. Marchebois, and L.A. Rochelle, Hydrogen Diffusion in Model Molybdenum Containing Steel: A Comparison between Hydrogen Ingress Promoted by H2S or Cathodic Charging, in NACE Corrosion Conference & Expo, 2011, p 1–14. F. Thebault, S. Frappart, L. Delattre, H. Marchebois, and L.A. Rochelle, Hydrogen Diffusion in Model Molybdenum Containing Steel: A Comparison between Hydrogen Ingress Promoted by H2S or Cathodic Charging, in NACE Corrosion Conference & Expo, 2011, p 1–14.
19.
go back to reference M.A. Mohtadi-Bonab, J.A. Szpunar, L. Collins, and R. Stankievech, Evaluation of Hydrogen Induced Cracking Behavior of API, X70 Pipeline Steel at Different Heat Treatments, Int. J. Hydrogen Energy, 2014, 39(11), p 6076–6088CrossRef M.A. Mohtadi-Bonab, J.A. Szpunar, L. Collins, and R. Stankievech, Evaluation of Hydrogen Induced Cracking Behavior of API, X70 Pipeline Steel at Different Heat Treatments, Int. J. Hydrogen Energy, 2014, 39(11), p 6076–6088CrossRef
20.
go back to reference D.G. Stalheim and B. Hoh, Guidelines for Production of API Pipelines Steels Suitable for Hydrogen Induced, in Proceedings of the 8th International Pipeline Conference IPC 2010, Calgary, Alberta, Canada, 2010, p 1–11. D.G. Stalheim and B. Hoh, Guidelines for Production of API Pipelines Steels Suitable for Hydrogen Induced, in Proceedings of the 8th International Pipeline Conference IPC 2010, Calgary, Alberta, Canada, 2010, p 1–11.
21.
go back to reference B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and J.Y. Yoo, Correlation of Rolling Condition, Microstructure, and Low-Temperature Toughness of X70 Pipeline Steels, Metall. Mater. Trans. A, 2005, 36(7), p 1793–1805CrossRef B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and J.Y. Yoo, Correlation of Rolling Condition, Microstructure, and Low-Temperature Toughness of X70 Pipeline Steels, Metall. Mater. Trans. A, 2005, 36(7), p 1793–1805CrossRef
22.
go back to reference S.S. Nayak, R.D.K. Misra, J. Hartmann, F. Siciliano, and J.M. Gray, Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel, Mater. Sci. Eng. A, 2008, 494(1–2), p 456–463CrossRef S.S. Nayak, R.D.K. Misra, J. Hartmann, F. Siciliano, and J.M. Gray, Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel, Mater. Sci. Eng. A, 2008, 494(1–2), p 456–463CrossRef
23.
go back to reference J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar, Microstructure, Texture Evolution and Mechanical Properties of X70 Pipeline Steel after Different Thermomechanical Treatments, Mater. Sci. Eng, A, 2017, 703, p 477–485CrossRef J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar, Microstructure, Texture Evolution and Mechanical Properties of X70 Pipeline Steel after Different Thermomechanical Treatments, Mater. Sci. Eng, A, 2017, 703, p 477–485CrossRef
24.
go back to reference R. Mendoza, M. Alanis, R. Perez, O. Alvarez, C. Gonzalez, and J.A. Juarez-Islas, On the Processing of Fe-C-Mn-Nb Steels to Produce Plates for Pipelines with Sour Gas Resistance, Mater. Sci. Eng. A, 2002, 337(1–2), p 115–120CrossRef R. Mendoza, M. Alanis, R. Perez, O. Alvarez, C. Gonzalez, and J.A. Juarez-Islas, On the Processing of Fe-C-Mn-Nb Steels to Produce Plates for Pipelines with Sour Gas Resistance, Mater. Sci. Eng. A, 2002, 337(1–2), p 115–120CrossRef
25.
go back to reference API 5L, “Specification for Line Pipe,” American Petroleum Institute, 2000. API 5L, “Specification for Line Pipe,” American Petroleum Institute, 2000.
26.
go back to reference M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi, A Comparative Study of Hydrogen Induced Cracking Behavior in API, 5L X60 and X70 Pipeline Steels, Eng. Fail. Anal., 2013, 33, p 163–175CrossRef M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi, A Comparative Study of Hydrogen Induced Cracking Behavior in API, 5L X60 and X70 Pipeline Steels, Eng. Fail. Anal., 2013, 33, p 163–175CrossRef
28.
go back to reference E. Ramírez, J.G. González-Rodriguez, A. Torres-Islas, S. Serna, B. Campillo, G. Dominguez-Patiño, and J.A. Juárez-Islas, Effect of Microstructure on the Sulphide Stress Cracking Susceptibility of a High Strength Pipeline Steel, Corros. Sci., 2008, 50(12), p 3534–3541CrossRef E. Ramírez, J.G. González-Rodriguez, A. Torres-Islas, S. Serna, B. Campillo, G. Dominguez-Patiño, and J.A. Juárez-Islas, Effect of Microstructure on the Sulphide Stress Cracking Susceptibility of a High Strength Pipeline Steel, Corros. Sci., 2008, 50(12), p 3534–3541CrossRef
29.
go back to reference B. Jeong, R. Gauvin, and S. Yue, EBSD Study of Martensite in a Dual Phase Steel, Met. Mater., 2002, 8, p 700–701 B. Jeong, R. Gauvin, and S. Yue, EBSD Study of Martensite in a Dual Phase Steel, Met. Mater., 2002, 8, p 700–701
30.
go back to reference X.H. Gao, J. Li, C. Li, Y. Liang, L.X. Du, and Z.G. Liu, Research of High Grade HIC-Resistant Pipeline Steel, Adv. Mater. Res., 2014, 900, p 730–733CrossRef X.H. Gao, J. Li, C. Li, Y. Liang, L.X. Du, and Z.G. Liu, Research of High Grade HIC-Resistant Pipeline Steel, Adv. Mater. Res., 2014, 900, p 730–733CrossRef
31.
go back to reference M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2015, 620, p 97–106CrossRef M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking, Mater. Sci. Eng. A, 2015, 620, p 97–106CrossRef
32.
go back to reference T. Teshima, M. Kosaka, K. Ushioda, N. Koga, and N. Nakada, Local Cementite Cracking Induced by Heterogeneous Plastic Deformation in Lamellar Pearlite, Mater. Sci. Eng. A, 2017, 679, p 223–229CrossRef T. Teshima, M. Kosaka, K. Ushioda, N. Koga, and N. Nakada, Local Cementite Cracking Induced by Heterogeneous Plastic Deformation in Lamellar Pearlite, Mater. Sci. Eng. A, 2017, 679, p 223–229CrossRef
33.
go back to reference N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806CrossRef N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806CrossRef
34.
go back to reference D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, F.J. Barbaro, and E.V. Pereloma, Role of Microstructure in Susceptibility of X70 Pipeline Steel to Hydrogen Embrittlement, Mater. Sci. Forum, 2010, 654–656, p 162–165CrossRef D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, F.J. Barbaro, and E.V. Pereloma, Role of Microstructure in Susceptibility of X70 Pipeline Steel to Hydrogen Embrittlement, Mater. Sci. Forum, 2010, 654–656, p 162–165CrossRef
35.
go back to reference H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, 56(1), p 24–36CrossRef H.K.D.H. Bhadeshia, Prevention of Hydrogen Embrittlement in Steels, ISIJ Int., 2016, 56(1), p 24–36CrossRef
36.
go back to reference M. Masoumi, L. Flavio, G. Herculano, H. Ferreira, and G. De Abreu, Study of Texture and Microstructure Evaluation of Steel API, 5L X70 under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2015, 639, p 550–558CrossRef M. Masoumi, L. Flavio, G. Herculano, H. Ferreira, and G. De Abreu, Study of Texture and Microstructure Evaluation of Steel API, 5L X70 under Various Thermomechanical Cycles, Mater. Sci. Eng. A, 2015, 639, p 550–558CrossRef
37.
go back to reference Z. Shirband, M.R. Shishesaz, and A. Ashrafi, Investigating the Effect of Heat Treatment on Hydrogen Permeation Behavior of API, X-70 Steel, Phase Transit., 2012, 85(6), p 503–511CrossRef Z. Shirband, M.R. Shishesaz, and A. Ashrafi, Investigating the Effect of Heat Treatment on Hydrogen Permeation Behavior of API, X-70 Steel, Phase Transit., 2012, 85(6), p 503–511CrossRef
38.
go back to reference M.A. Mohtadi-Bonab, J.A. Szpunar, R. Basu, and M. Eskandari, The Mechanism of Failure by Hydrogen Induced Cracking in an Acidic Environment for API, 5L X70 Pipeline Steel, Int. J. Hydrogen Energy, 2015, 40(2), p 1096–1107CrossRef M.A. Mohtadi-Bonab, J.A. Szpunar, R. Basu, and M. Eskandari, The Mechanism of Failure by Hydrogen Induced Cracking in an Acidic Environment for API, 5L X70 Pipeline Steel, Int. J. Hydrogen Energy, 2015, 40(2), p 1096–1107CrossRef
39.
go back to reference M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51(1), p 119–128CrossRef M.A. Arafin and J.A. Szpunar, A New Understanding of Intergranular Stress Corrosion Cracking Resistance of Pipeline Steel through Grain Boundary Character and Crystallographic Texture Studies, Corros. Sci., 2009, 51(1), p 119–128CrossRef
40.
go back to reference M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Effect of Arisen Dislocation Density and Texture Components during Cold Rolling and Annealing Treatments on Hydrogen Induced Cracking Susceptibility in Pipeline Steel, J. Mater. Res., 2016, 31(21), p 3390–3400CrossRef M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar, Effect of Arisen Dislocation Density and Texture Components during Cold Rolling and Annealing Treatments on Hydrogen Induced Cracking Susceptibility in Pipeline Steel, J. Mater. Res., 2016, 31(21), p 3390–3400CrossRef
41.
go back to reference W. Qin and J.A. Szpunar, A General Model for Hydrogen Trapping at the Inclusion-Matrix Interface and Its Relation to Crack Initiation, Philos. Mag., 2017, 97(34), p 3296–3316CrossRef W. Qin and J.A. Szpunar, A General Model for Hydrogen Trapping at the Inclusion-Matrix Interface and Its Relation to Crack Initiation, Philos. Mag., 2017, 97(34), p 3296–3316CrossRef
42.
go back to reference M.A. Mohtadi-Bonab and M. Eskandari, A Focus on Different Factors Affecting Hydrogen Induced Cracking in Oil and Natural Gas Pipeline Steel, Eng. Fail. Anal., 2016, 2017(79), p 351–360 M.A. Mohtadi-Bonab and M. Eskandari, A Focus on Different Factors Affecting Hydrogen Induced Cracking in Oil and Natural Gas Pipeline Steel, Eng. Fail. Anal., 2016, 2017(79), p 351–360
43.
go back to reference T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of Non-Metallic Inclusions on Hydrogen-Induced Cracking of API5L X100 Steel, Int. J. Hydrogen Energy, 2010, 35(15), p 8014–8021CrossRef T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of Non-Metallic Inclusions on Hydrogen-Induced Cracking of API5L X100 Steel, Int. J. Hydrogen Energy, 2010, 35(15), p 8014–8021CrossRef
44.
go back to reference M.A. Mohtadi-Bonab, M. Eskandari, R. Karimdadashi, and J.A. Szpunar, Effect of Different Microstructural Parameters on Hydrogen Induced Cracking in an API, X70 Pipeline Steel, Met. Mater. Int., 2017, 23(4), p 726–735CrossRef M.A. Mohtadi-Bonab, M. Eskandari, R. Karimdadashi, and J.A. Szpunar, Effect of Different Microstructural Parameters on Hydrogen Induced Cracking in an API, X70 Pipeline Steel, Met. Mater. Int., 2017, 23(4), p 726–735CrossRef
45.
go back to reference O.M.I. Todoshchenko, Y. Yagodzinskyy, T. Saukkonen, and H. Hänninen, Role of Nonmetallic Inclusions in Hydrogen Embrittlement of High-Strength Carbon Steels with Different Microalloying, Metall. Mater. Trans. A, 2014, 45(11), p 4742–4747CrossRef O.M.I. Todoshchenko, Y. Yagodzinskyy, T. Saukkonen, and H. Hänninen, Role of Nonmetallic Inclusions in Hydrogen Embrittlement of High-Strength Carbon Steels with Different Microalloying, Metall. Mater. Trans. A, 2014, 45(11), p 4742–4747CrossRef
46.
go back to reference M.W. Zhou and H. Yu, Effects of Precipitates and Inclusions on the Fracture Toughness of Hot Rolling X70 Pipeline Steel Plates, Int. J. Miner. Metall. Mater., 2012, 19(9), p 805–811CrossRef M.W. Zhou and H. Yu, Effects of Precipitates and Inclusions on the Fracture Toughness of Hot Rolling X70 Pipeline Steel Plates, Int. J. Miner. Metall. Mater., 2012, 19(9), p 805–811CrossRef
47.
go back to reference J. Nieto, T. Elías, G. Lopez, G. Campos, F. Lopez, R. Garcia, and A.K. De, Effective Process Design for the Production of HIC-Resistant Linepipe Steels, J. Mater. Eng. Perform., 2013, 22(9), p 2493–2499CrossRef J. Nieto, T. Elías, G. Lopez, G. Campos, F. Lopez, R. Garcia, and A.K. De, Effective Process Design for the Production of HIC-Resistant Linepipe Steels, J. Mater. Eng. Perform., 2013, 22(9), p 2493–2499CrossRef
48.
go back to reference Z. Lv, H.-W. Ni, H. Zhang, and C. Liu, Evolution of MnS Inclusions in Ti-Bearing X80 Pipeline Steel, J. Iron. Steel Res. Int., 2017, 24, p 654–660CrossRef Z. Lv, H.-W. Ni, H. Zhang, and C. Liu, Evolution of MnS Inclusions in Ti-Bearing X80 Pipeline Steel, J. Iron. Steel Res. Int., 2017, 24, p 654–660CrossRef
49.
go back to reference J. Xu, R.D.K. Misra, B. Guo, Z. Jia, and L. Zheng, Understanding Variability in Mechanical Properties of Hot Rolled Microalloyed Pipeline Steels: Process—Structure—Property Relationship, Mater. Sci. Eng., A, 2013, 574, p 94–103CrossRef J. Xu, R.D.K. Misra, B. Guo, Z. Jia, and L. Zheng, Understanding Variability in Mechanical Properties of Hot Rolled Microalloyed Pipeline Steels: Process—Structure—Property Relationship, Mater. Sci. Eng., A, 2013, 574, p 94–103CrossRef
50.
go back to reference L. Lan, Z. Chang, X. Kong, C. Qiu, and D. Zhao, Phase Transformation, Microstructure, and Mechanical Properties of X100 Pipeline Steels Based on TMCP and HTP Concepts, J. Mater. Sci., 2017, 52(3), p 1661–1678CrossRef L. Lan, Z. Chang, X. Kong, C. Qiu, and D. Zhao, Phase Transformation, Microstructure, and Mechanical Properties of X100 Pipeline Steels Based on TMCP and HTP Concepts, J. Mater. Sci., 2017, 52(3), p 1661–1678CrossRef
51.
go back to reference S.J. Kim, H.G. Jung, and K.Y. Kim, Effect of Tensile Stress in Elastic and Plastic Range on Hydrogen Permeation of High-Strength Steel in Sour Environment, Electrochim. Acta, 2012, 78, p 139–146CrossRef S.J. Kim, H.G. Jung, and K.Y. Kim, Effect of Tensile Stress in Elastic and Plastic Range on Hydrogen Permeation of High-Strength Steel in Sour Environment, Electrochim. Acta, 2012, 78, p 139–146CrossRef
Metadata
Title
Influence of Thermomechanically Controlled Processing on Microstructure and Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel
Authors
Enyinnaya Ohaeri
Joseph Omale
Ahmed Tiamiyu
K. M. Mostafijur Rahman
Jerzy Szpunar
Publication date
10-08-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3556-7

Other articles of this Issue 9/2018

Journal of Materials Engineering and Performance 9/2018 Go to the issue

Premium Partners