Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2019

28-01-2019

Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films

Authors: Monalisa Halder, Ajit Kumar Meikap

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, optical, thermal and electrical properties of different wt% of TbMnO3 (TMO) nanoparticles (NPs) loaded poly(vinyl alcohol) (PVA) films are reported in detail. The films are structurally characterised by X-ray diffraction spectroscopy and field emission scanning electron microscopy (FESEM). Optical parameters such as optical band gap energy \(\left( {{E_g}} \right)\), Urbach energy \(\left( {{E_U}} \right)\) are calculated. Red shift in the absorption band of the nanocomposite films indicates the complex formation between the nanofiller and the matrix. Thermal strength increases in TMO-PVA films than the pure PVA film. A reduction in the glass transition temperature \(\left( {{T_G}} \right)\) of the nanocomposite films is noticed with the insertion of TMO NPs in the PVA matrix. DC conductivity of the samples is explained by Mott’s variable range hopping model, Greave’s model, small polaron hopping model, non-adiabatic hopping model to explain the conduction mechanism. Modified Cole–Cole model explains the frequency variation of dielectric spectra. The relaxation peak position shifts towards lower frequency region with the inclusion of TMO filler in the PVA matrix indicating the decrease in mobility of the dipolar functional groups in the polymer chain. Modified Kohlrausch–Williams–Watts model is applied to explain the frequency dependent electric modulus spectra. AC conductivity of the films is explained by Jonscher’s power law. Correlated barrier hopping model is applied here. The presence of large current of the films at zero voltage may be due to the presence of ferroelectricity in the nanocomposite systems. Oxygen related defect states exist in the polymeric system which exhibit trapping of the charge carriers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Saini, A. Sharma, R. Dhiman, S. Aggarwal, S. Ram, P.K. Sharma, J. Alloys Compd. 714, 172 (2017)CrossRef I. Saini, A. Sharma, R. Dhiman, S. Aggarwal, S. Ram, P.K. Sharma, J. Alloys Compd. 714, 172 (2017)CrossRef
2.
go back to reference T. Prabhakaran, J. Hemalatha, J. Polym. Sci. B Polym. Phys. 46, 2418 (2008)CrossRef T. Prabhakaran, J. Hemalatha, J. Polym. Sci. B Polym. Phys. 46, 2418 (2008)CrossRef
3.
5.
7.
go back to reference K. Krishnamoorthy, J. Nanostruct. Polym. Nanocomp. 5, 83 (2012) K. Krishnamoorthy, J. Nanostruct. Polym. Nanocomp. 5, 83 (2012)
8.
10.
go back to reference A. Kharazmi, E. Saion, N. Faraji, N. Soltani, A. Dehzangi, Chin. Phys. Lett. 30, 57803 (2013)CrossRef A. Kharazmi, E. Saion, N. Faraji, N. Soltani, A. Dehzangi, Chin. Phys. Lett. 30, 57803 (2013)CrossRef
12.
13.
go back to reference J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, Y.P. Lee, Appl. Phys. Lett. 106, 1 (2015) J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, Y.P. Lee, Appl. Phys. Lett. 106, 1 (2015)
14.
go back to reference C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 28, 2586 (2017) C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 28, 2586 (2017)
15.
go back to reference M. Alnassar, A. Alfadhel, Yu.P. Ivanov, J. Kosel, J. Appl. Phys. 117, 1 (2015)CrossRef M. Alnassar, A. Alfadhel, Yu.P. Ivanov, J. Kosel, J. Appl. Phys. 117, 1 (2015)CrossRef
17.
go back to reference R. Hatel, M. Goumri, B. Ratier, M. Baitoul, Mater. Chem. Phys. 193, 156 (2017)CrossRef R. Hatel, M. Goumri, B. Ratier, M. Baitoul, Mater. Chem. Phys. 193, 156 (2017)CrossRef
18.
20.
go back to reference C. Zhang, H. Yan, X. Wan, D. Kang, L. Li, X. Lu, J. Zhu, Mater. Lett. 111, 147 (2013)CrossRef C. Zhang, H. Yan, X. Wan, D. Kang, L. Li, X. Lu, J. Zhu, Mater. Lett. 111, 147 (2013)CrossRef
21.
go back to reference V.M. Gaikwad, S.M. Khule, S.A. Acharya, Int. J. Knowl. Eng. 3, 55 (2012) V.M. Gaikwad, S.M. Khule, S.A. Acharya, Int. J. Knowl. Eng. 3, 55 (2012)
22.
go back to reference J.A.L. López, J.C. López, D.E.V. Valerdi, G.G. Salgado, T.D. Becerril, A.P. Pedraza, F.J.F. Gracia, Nanosc. Res. Lett. 7, 604 (2012)CrossRef J.A.L. López, J.C. López, D.E.V. Valerdi, G.G. Salgado, T.D. Becerril, A.P. Pedraza, F.J.F. Gracia, Nanosc. Res. Lett. 7, 604 (2012)CrossRef
23.
go back to reference A. Elahi, M. Irfan, A. Shakoor, N.A. Niaz, K. Mahmood, M. Qasim, J. Alloys Compd. 651, 328 (2015)CrossRef A. Elahi, M. Irfan, A. Shakoor, N.A. Niaz, K. Mahmood, M. Qasim, J. Alloys Compd. 651, 328 (2015)CrossRef
24.
go back to reference M. Halder, A.K. Das, A.K. Meikap AIP Conference Proceedings 1832 110035 (2017) M. Halder, A.K. Das, A.K. Meikap AIP Conference Proceedings 1832 110035 (2017)
25.
go back to reference A.S. Das, M. Roy, D. Roy, S. Bhattacharya, Int. J. Lat. Technol. Eng. Manage. Appl. Sci. 6, 11 (2017) A.S. Das, M. Roy, D. Roy, S. Bhattacharya, Int. J. Lat. Technol. Eng. Manage. Appl. Sci. 6, 11 (2017)
27.
go back to reference A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)CrossRef A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)CrossRef
28.
go back to reference S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Appl. Phys. 113, 093703 (2013)CrossRef S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Appl. Phys. 113, 093703 (2013)CrossRef
29.
go back to reference J. Lago, P.D. Battle, M.J. Rosseinsky, A.I. Coldea, J. Singleton, J. Phys.: Condens. Matter. 15, 6817 (2003) J. Lago, P.D. Battle, M.J. Rosseinsky, A.I. Coldea, J. Singleton, J. Phys.: Condens. Matter. 15, 6817 (2003)
30.
31.
go back to reference P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, J. Phys. Chem. Solids 111, 266 (2017)CrossRef P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, J. Phys. Chem. Solids 111, 266 (2017)CrossRef
32.
34.
35.
go back to reference D. Ming, J.M. Reau, J. Ravez, J. Gitae, P.J. Hagenmuler, J. Solid State Chem. 116, 185 (1995)CrossRef D. Ming, J.M. Reau, J. Ravez, J. Gitae, P.J. Hagenmuler, J. Solid State Chem. 116, 185 (1995)CrossRef
36.
go back to reference Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, M. Maglione, J. Appl. Phys. 100, 114111 (2006)CrossRef Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, M. Maglione, J. Appl. Phys. 100, 114111 (2006)CrossRef
37.
go back to reference P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972) P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)
38.
go back to reference S.A. Yeriskin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 43827 (2016) S.A. Yeriskin, M. Balbasi, A. Tataroglu, J. Appl. Polym. Sci. 133, 43827 (2016)
40.
43.
go back to reference R.P. Ummer, B. Raneesh, C. Thevenot, D. Rouxel, S. Thomas, N. Kalarikkal, RSC Adv. 6, 28069 (2016)CrossRef R.P. Ummer, B. Raneesh, C. Thevenot, D. Rouxel, S. Thomas, N. Kalarikkal, RSC Adv. 6, 28069 (2016)CrossRef
44.
go back to reference A.G. El-Shamy, W. Attia, K.M. Abd El-Kader, J. Alloys Compd. 590, 309 (2014)CrossRef A.G. El-Shamy, W. Attia, K.M. Abd El-Kader, J. Alloys Compd. 590, 309 (2014)CrossRef
45.
go back to reference E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M. Morsi, J. Mater. Res. Tech. 293, 13 (2017) E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M. Morsi, J. Mater. Res. Tech. 293, 13 (2017)
47.
48.
49.
50.
go back to reference O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. - Mater. Electron. 27, 3591 (2016)CrossRef O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, J. Mater. Sci. - Mater. Electron. 27, 3591 (2016)CrossRef
51.
go back to reference R.V. Bernal, G.H. Pérez, M.E.C. Olalde, M.T. Torres, J. Elect. Comput. Eng. 2013, 1 (2013)CrossRef R.V. Bernal, G.H. Pérez, M.E.C. Olalde, M.T. Torres, J. Elect. Comput. Eng. 2013, 1 (2013)CrossRef
52.
53.
54.
go back to reference S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D: Appl. Phys. 47, 275301 (2014)CrossRef S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D: Appl. Phys. 47, 275301 (2014)CrossRef
55.
go back to reference Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004)CrossRef Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004)CrossRef
57.
go back to reference P. Thomas, K. Dwarakanath, P. Sampathkumaran, S. Seetharamu and Kishore Proc. 2005 Int. Symp. Electr. Insul. Mater. 26, 612 (2005) P. Thomas, K. Dwarakanath, P. Sampathkumaran, S. Seetharamu and Kishore Proc. 2005 Int. Symp. Electr. Insul. Mater. 26, 612 (2005)
58.
go back to reference S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Mater. Sci. 50, 1632 (2015)CrossRef S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Mater. Sci. 50, 1632 (2015)CrossRef
59.
go back to reference A.K. Das, S. Sinha, A. Mukherjee, A.K. Meikap, Mater. Chem. Phys. 167, 286 (2015)CrossRef A.K. Das, S. Sinha, A. Mukherjee, A.K. Meikap, Mater. Chem. Phys. 167, 286 (2015)CrossRef
60.
go back to reference S. He, G. Liu, Y. Zhu, X. Ma, J. Sun, S. Kang, S. Yan, Y. Chen, L. Mei, J. Jiao, RSC Adv. 7, 22715 (2017)CrossRef S. He, G. Liu, Y. Zhu, X. Ma, J. Sun, S. Kang, S. Yan, Y. Chen, L. Mei, J. Jiao, RSC Adv. 7, 22715 (2017)CrossRef
62.
Metadata
Title
Influence on loading terbium manganate on optical, thermal and electrical properties of polyvinyl alcohol nanocomposite films
Authors
Monalisa Halder
Ajit Kumar Meikap
Publication date
28-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00773-8

Other articles of this Issue 5/2019

Journal of Materials Science: Materials in Electronics 5/2019 Go to the issue