Skip to main content
Top
Published in: Rare Metals 11/2017

06-09-2017

Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets

Authors: Ji-Heng Li, Wen-Lan Zhang, Chao Yuan, Xiao-Qian Bao, Xue-Xu Gao

Published in: Rare Metals | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inhibition force of precipitate particles for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets was investigated in this study. After a continuous heating and a high-temperature annealing, the Fe83Ga17 + 0.5 at% B alloy sheets do not occur significant abnormal grain growth. Correspondingly, textures of {111}<112> and {100}<001> in addition to the Goss texture are obtained in the final annealed alloy sheets. By contrast, after the same annealing processes, the size of {110} textured grains is very large in the final annealed Fe83Ga17 + 0.5 at% NbC alloy sheets due to the abnormal grain growth, which results in a sharp Goss texture. BN precipitates were introduced into Fe83Ga17 + 0.2 at% B alloy sheets by nitriding annealing at 800 °C for 2 min under NH3 atmosphere. The abnormal grain growth of Goss grains is achieved in 0.2 at% B-doped Fe83Ga17 alloy sheets after a high-temperature annealing, which is attributed to the enhanced inhibition force by introducing BN precipitates. During the recrystallization annealing process, Fe2B precipitates is easy to coarsen and decompose at high temperature due to the low thermal stability, resulting in a decrease or even disappearance of the inhibition force. For NbC and BN precipitates, the thermal stability and hardness of particles are both better than those of Fe2B precipitates, leading to strong inhibition force. Because of the preferred Goss texture, the magnetostriction of 2.05 × 10−4 and 1.81 × 10−4 is obtained in the secondary recrystallized Fe83Ga17 + 0.5 at% NbC and Fe83Ga17 + 0.2 at% B alloy sheets, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL. Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn. 2000;36(5):3238.CrossRef Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL. Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn. 2000;36(5):3238.CrossRef
[2]
go back to reference Srisukhumbowornchai N, Guruswamy S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J Appl Phys. 2001;90(11):5680.CrossRef Srisukhumbowornchai N, Guruswamy S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J Appl Phys. 2001;90(11):5680.CrossRef
[3]
go back to reference Emdadi A. Microstructure and magnetostrictive behavior of Fe-15 at% Ga alloy with different cooling rates. Rare Met. 2015;34(4):251.CrossRef Emdadi A. Microstructure and magnetostrictive behavior of Fe-15 at% Ga alloy with different cooling rates. Rare Met. 2015;34(4):251.CrossRef
[4]
go back to reference Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M. Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater. 2004;52(17):5043.CrossRef Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M. Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater. 2004;52(17):5043.CrossRef
[5]
go back to reference Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.CrossRef Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.CrossRef
[6]
go back to reference Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA. Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys. 2003;93(10):8621.CrossRef Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA. Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys. 2003;93(10):8621.CrossRef
[7]
go back to reference Summers E, Meloy R, Na SM. Magnetostriction and texture relationships in annealed galfenol alloys. J Appl Phys. 2009;105(7):07A922.CrossRef Summers E, Meloy R, Na SM. Magnetostriction and texture relationships in annealed galfenol alloys. J Appl Phys. 2009;105(7):07A922.CrossRef
[8]
go back to reference Na SM, Suh SJ, Flatau AB. Surface segregation and texture development in rolled Fe–Ga alloy. J Magn Magn Mater. 2007;310(2):2630.CrossRef Na SM, Suh SJ, Flatau AB. Surface segregation and texture development in rolled Fe–Ga alloy. J Magn Magn Mater. 2007;310(2):2630.CrossRef
[9]
go back to reference Srisukhumbowornchai N, Guruswamy S. Crystallographic textures in rolled and annealed Fe–Ga and Fe–Al alloys. Metall Mater Trans A. 2004;35(9):2963.CrossRef Srisukhumbowornchai N, Guruswamy S. Crystallographic textures in rolled and annealed Fe–Ga and Fe–Al alloys. Metall Mater Trans A. 2004;35(9):2963.CrossRef
[10]
go back to reference Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater. 2010;63(2):246.CrossRef Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater. 2010;63(2):246.CrossRef
[11]
go back to reference Li JH, Gao XX, Zhu J, He CX, Qiao JW, Zhang MC. Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J Alloys Compd. 2009;476(1):529.CrossRef Li JH, Gao XX, Zhu J, He CX, Qiao JW, Zhang MC. Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J Alloys Compd. 2009;476(1):529.CrossRef
[12]
go back to reference Meloy R, Summers E. Magnetic property-texture relationships in galfenol rolled sheet stacks. J Appl Phys. 2011;109(7):07A930.CrossRef Meloy R, Summers E. Magnetic property-texture relationships in galfenol rolled sheet stacks. J Appl Phys. 2011;109(7):07A930.CrossRef
[13]
go back to reference Na SM, Yoo JH, Flatau AB. Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide. IEEE Trans Magn. 2009;45(10):4132.CrossRef Na SM, Yoo JH, Flatau AB. Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide. IEEE Trans Magn. 2009;45(10):4132.CrossRef
[14]
go back to reference Na SM, Flatau AB. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation. Scr Mater. 2012;66(5):307.CrossRef Na SM, Flatau AB. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation. Scr Mater. 2012;66(5):307.CrossRef
[15]
go back to reference Na SM, Flatau AB. Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct. 2012;21(5):055024.CrossRef Na SM, Flatau AB. Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct. 2012;21(5):055024.CrossRef
[16]
go back to reference Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;374:459.CrossRef Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;374:459.CrossRef
[18]
go back to reference He ZH, Sha YH, Fu Q, Lei F, Zhang F, Zuo L. Secondary recrystallization and magnetostriction in binary Fe81Ga19 thin sheets. J Appl Phys. 2016;119(12):123904.CrossRef He ZH, Sha YH, Fu Q, Lei F, Zhang F, Zuo L. Secondary recrystallization and magnetostriction in binary Fe81Ga19 thin sheets. J Appl Phys. 2016;119(12):123904.CrossRef
[19]
go back to reference Na SM, Flatau AB. Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys. J Appl Phys. 2008;103:07D304.CrossRef Na SM, Flatau AB. Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys. J Appl Phys. 2008;103:07D304.CrossRef
[20]
go back to reference Li JH, Gao XX, Xie JX, Yuan C, Zhu J, Yu RB. Recrystallization behavior and magnetostriction under pre-compressive stress of Fe–Ga–B sheets. Intermetallics. 2012;26(7):66.CrossRef Li JH, Gao XX, Xie JX, Yuan C, Zhu J, Yu RB. Recrystallization behavior and magnetostriction under pre-compressive stress of Fe–Ga–B sheets. Intermetallics. 2012;26(7):66.CrossRef
[21]
go back to reference Sun AL, Liu JH, Jiang CB. Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments. J Mater Sci. 2014;49(13):4565.CrossRef Sun AL, Liu JH, Jiang CB. Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments. J Mater Sci. 2014;49(13):4565.CrossRef
[22]
go back to reference Perrard F, Deschamps A, Maugis P. Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 2007;55(4):1255.CrossRef Perrard F, Deschamps A, Maugis P. Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 2007;55(4):1255.CrossRef
[23]
go back to reference Yan HT, Bi HY, Li X, Xu Z. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging. Mater Charact. 2009;60(3):204.CrossRef Yan HT, Bi HY, Li X, Xu Z. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging. Mater Charact. 2009;60(3):204.CrossRef
[24]
go back to reference Na SM, Flatau AB. Magnetostriction and surface-energyinducedselective grain growth in rolled Galfenol doped with sulfur. In: Proceedings of SPIE. 2008;5761:192. Na SM, Flatau AB. Magnetostriction and surface-energyinducedselective grain growth in rolled Galfenol doped with sulfur. In: Proceedings of SPIE. 2008;5761:192.
[25]
go back to reference Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;391:145.CrossRef Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;391:145.CrossRef
[26]
go back to reference Woo JS, Han CH, Hong BD, Harase J. Influence of secondary recrystallization onset temperature on evolution of sharp goss texture in nitrided Fe-3%Si alloy. J Japan Inst Met. 1998;62(7):642.CrossRef Woo JS, Han CH, Hong BD, Harase J. Influence of secondary recrystallization onset temperature on evolution of sharp goss texture in nitrided Fe-3%Si alloy. J Japan Inst Met. 1998;62(7):642.CrossRef
[27]
go back to reference Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int. 2005;45(1):95.CrossRef Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int. 2005;45(1):95.CrossRef
[28]
go back to reference Na SM, Atwater KM, Flatau AB. Particle pinning force thresholds for promoting abnormal grain growth in magnetostrictive Fe–Ga alloy sheets. Scr Mater. 2015;100:1.CrossRef Na SM, Atwater KM, Flatau AB. Particle pinning force thresholds for promoting abnormal grain growth in magnetostrictive Fe–Ga alloy sheets. Scr Mater. 2015;100:1.CrossRef
[29]
go back to reference Li JH, Qi QQ, Yuan C, Bao XQ, Gao XX. Selective abnormal growth behavior of goss grains in magnetostrictive Fe–Ga alloy sheets. Mater Trans. 2016;57(12):2083.CrossRef Li JH, Qi QQ, Yuan C, Bao XQ, Gao XX. Selective abnormal growth behavior of goss grains in magnetostrictive Fe–Ga alloy sheets. Mater Trans. 2016;57(12):2083.CrossRef
[30]
go back to reference Liu YY, Li JH, Gao XX. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe–Ga–Al alloys. J Magn Magn Mater. 2017;435:194.CrossRef Liu YY, Li JH, Gao XX. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe–Ga–Al alloys. J Magn Magn Mater. 2017;435:194.CrossRef
Metadata
Title
Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets
Authors
Ji-Heng Li
Wen-Lan Zhang
Chao Yuan
Xiao-Qian Bao
Xue-Xu Gao
Publication date
06-09-2017
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 11/2017
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0956-z

Other articles of this Issue 11/2017

Rare Metals 11/2017 Go to the issue

Premium Partners