Skip to main content
Erschienen in: Rare Metals 8/2015

01.08.2015

Recent progress in Heusler-type magnetic shape memory alloys

verfasst von: Guang-Hua Yu, Yun-Li Xu, Zhu-Hong Liu, Hong-Mei Qiu, Ze-Ya Zhu, Xiang-Ping Huang, Li-Qing Pan

Erschienen in: Rare Metals | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic shape memory alloys (MSMAs), both in condensed matter physics and in material science, are one of the most extensive research subjects. They show prompt response to the external magnetic field and give rise to large strain and have fine reversibility. The well-known example is Heusler-type MSMAs, which possess excellent multifunctional properties and have potential applications in energy transducer, actuator, sensor, microelectromechanical system, and magnetic refrigerator. In this paper, it is shown the recent progress in magnetostructural transformation, magnetic properties, shape deformation, magnetocaloric effect as well as magnetic field-induced shape memory effect in Ni–Mn–Ga, NiMnZ (Z = In, Sn, Sb), and NiCoMnZ (Z = In, Sn, Sb, Al) Heusler-type MSMAs. The remaining issues and possible challenges are briefly discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Liu ZH, Liu H, Zhang XX, Zhang XK, Xiao JQ, Zhu ZY, Dai XF, Liu GD, Chen JL, Wu GH. Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons. Appl Phys Lett. 2005;86(18):182507.CrossRef Liu ZH, Liu H, Zhang XX, Zhang XK, Xiao JQ, Zhu ZY, Dai XF, Liu GD, Chen JL, Wu GH. Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons. Appl Phys Lett. 2005;86(18):182507.CrossRef
[2]
Zurück zum Zitat Wuttig M, Liu L, Tsuchiya K, James RD. Occurrence of ferromagnetic shape memory alloys. J Appl Phys. 2000;87(9):4707.CrossRef Wuttig M, Liu L, Tsuchiya K, James RD. Occurrence of ferromagnetic shape memory alloys. J Appl Phys. 2000;87(9):4707.CrossRef
[3]
Zurück zum Zitat Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(23):957.CrossRef Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(23):957.CrossRef
[4]
Zurück zum Zitat Monroe JA, Karaman I, Basaran B, Ito W, Umetsu RY, Kainuma R, Koyama K, Chumlyakov YI. Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012;60(20):6883–91.CrossRef Monroe JA, Karaman I, Basaran B, Ito W, Umetsu RY, Kainuma R, Koyama K, Chumlyakov YI. Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012;60(20):6883–91.CrossRef
[5]
Zurück zum Zitat Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91(10):102507.CrossRef Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91(10):102507.CrossRef
[6]
Zurück zum Zitat Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett. 2006;88(19):192513.CrossRef Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett. 2006;88(19):192513.CrossRef
[7]
Zurück zum Zitat Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Gómez-Polo C, Cesari E. Magnetic properties of the martensitic phase in Ni–Mn–In–Co metamagnetic shape memory alloys. Appl Phys Lett. 2013;102(10):101908.CrossRef Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Gómez-Polo C, Cesari E. Magnetic properties of the martensitic phase in Ni–Mn–In–Co metamagnetic shape memory alloys. Appl Phys Lett. 2013;102(10):101908.CrossRef
[8]
Zurück zum Zitat Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD. Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb. J Phys D Appl Phys. 2007;40(18):5523.CrossRef Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD. Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb. J Phys D Appl Phys. 2007;40(18):5523.CrossRef
[9]
Zurück zum Zitat Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(7):620.CrossRef Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(7):620.CrossRef
[10]
Zurück zum Zitat Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett. 2002;80(10):1746.CrossRef Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett. 2002;80(10):1746.CrossRef
[11]
Zurück zum Zitat Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys-a new actuation mechanism with large work output. Adv Funct Mater. 2009;19(7):983.CrossRef Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys-a new actuation mechanism with large work output. Adv Funct Mater. 2009;19(7):983.CrossRef
[12]
Zurück zum Zitat Groot RAd, Mueller FM, Engen PGV, Buschow KHJ. New class of materials: half-metallic ferromagnets. Phys Rev Lett. 1983;50(25):2024.CrossRef Groot RAd, Mueller FM, Engen PGV, Buschow KHJ. New class of materials: half-metallic ferromagnets. Phys Rev Lett. 1983;50(25):2024.CrossRef
[13]
Zurück zum Zitat Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.CrossRef Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.CrossRef
[14]
Zurück zum Zitat Ayuela A, Enkovaara J, Ullakko K, Nieminen RM. Structural properties of magnetic Heusler alloys. J Phys Condens Matter. 1999;11:2017.CrossRef Ayuela A, Enkovaara J, Ullakko K, Nieminen RM. Structural properties of magnetic Heusler alloys. J Phys Condens Matter. 1999;11:2017.CrossRef
[15]
Zurück zum Zitat Wang CW, Wang JM, Jiang CB. A linear elastic Ni50Mn25Ga9Cu16 martensitic alloy. Rare Met. 2013;32(1):29.CrossRef Wang CW, Wang JM, Jiang CB. A linear elastic Ni50Mn25Ga9Cu16 martensitic alloy. Rare Met. 2013;32(1):29.CrossRef
[16]
Zurück zum Zitat Galanakis I, Dederichs P, Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B. 2002;66(17):174429.CrossRef Galanakis I, Dederichs P, Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B. 2002;66(17):174429.CrossRef
[17]
Zurück zum Zitat Trudel S, Gaier O, Hamrle J, Hillebrands B. Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys. 2010;43(19):193001.CrossRef Trudel S, Gaier O, Hamrle J, Hillebrands B. Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys. 2010;43(19):193001.CrossRef
[18]
Zurück zum Zitat Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian JF, Shan G, Burkhardt U, Ouardi S, Felser C. New Mn2-based Heusler compounds. Z Anorg Allg Chem. 2014;640(5):738.CrossRef Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian JF, Shan G, Burkhardt U, Ouardi S, Felser C. New Mn2-based Heusler compounds. Z Anorg Allg Chem. 2014;640(5):738.CrossRef
[19]
Zurück zum Zitat Ritchie L, Xiao G, Ji Y, Chen TY, Chien CL, Wu G. Magnetic, structural, and transport properties of the Heusler alloys Co2MnSi and NiMnSb. Phys Rev B. 2003;68(10):104430.CrossRef Ritchie L, Xiao G, Ji Y, Chen TY, Chien CL, Wu G. Magnetic, structural, and transport properties of the Heusler alloys Co2MnSi and NiMnSb. Phys Rev B. 2003;68(10):104430.CrossRef
[20]
Zurück zum Zitat Liu G, Dai X, Liu H, Chen J, Li Y, Xiao G, Wu G. Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys Rev B. 2008;77(1):014424.CrossRef Liu G, Dai X, Liu H, Chen J, Li Y, Xiao G, Wu G. Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys Rev B. 2008;77(1):014424.CrossRef
[21]
Zurück zum Zitat Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):1966.CrossRef Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):1966.CrossRef
[22]
Zurück zum Zitat Passamani EC, Xavier F, Favre-Nicolin E, Larica C, Takeuchi AY, Castro IL, Proveti JR. Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn. J Appl Phys. 2009;105(3):033919.CrossRef Passamani EC, Xavier F, Favre-Nicolin E, Larica C, Takeuchi AY, Castro IL, Proveti JR. Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn. J Appl Phys. 2009;105(3):033919.CrossRef
[23]
Zurück zum Zitat Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater. 2010;9(6):478.CrossRef Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater. 2010;9(6):478.CrossRef
[24]
Zurück zum Zitat Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):4358.CrossRef Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):4358.CrossRef
[25]
Zurück zum Zitat Ma SC, Xuan HC, Zhang CL, Wang LY, Cao QQ, Wang DH, Du YW. Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni–Mn–Co–Sn alloy. Appl Phys Lett. 2010;97(5):052506.CrossRef Ma SC, Xuan HC, Zhang CL, Wang LY, Cao QQ, Wang DH, Du YW. Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni–Mn–Co–Sn alloy. Appl Phys Lett. 2010;97(5):052506.CrossRef
[26]
Zurück zum Zitat Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS, Srivastava V, James RD, Takeuchi I, Eggeler G, Ludwig A. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater. 2010;20(12):1917.CrossRef Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS, Srivastava V, James RD, Takeuchi I, Eggeler G, Ludwig A. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater. 2010;20(12):1917.CrossRef
[27]
Zurück zum Zitat Liu ZH, Zhang M, Cui YT, Zhou YQ, Wang WH, Wu GH, Zhang XX, Xiao G. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl Phys Lett. 2003;82(3):424.CrossRef Liu ZH, Zhang M, Cui YT, Zhou YQ, Wang WH, Wu GH, Zhang XX, Xiao G. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl Phys Lett. 2003;82(3):424.CrossRef
[28]
Zurück zum Zitat Liu Z, Hu H, Liu G, Cui Y, Zhang M, Chen J, Wu G, Xiao G. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa. Phys Rev B. 2004;69(13):134415.CrossRef Liu Z, Hu H, Liu G, Cui Y, Zhang M, Chen J, Wu G, Xiao G. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa. Phys Rev B. 2004;69(13):134415.CrossRef
[29]
Zurück zum Zitat Liu ZH, Liu H, Zhang XX, Zhang M, Dai XF, Hu HN, Chen JL, Wu GH. Martensitic transformation and magnetic properties of Heusler alloy Ni–Fe–Ga ribbon. Phys Lett A. 2004;329(3):214.CrossRef Liu ZH, Liu H, Zhang XX, Zhang M, Dai XF, Hu HN, Chen JL, Wu GH. Martensitic transformation and magnetic properties of Heusler alloy Ni–Fe–Ga ribbon. Phys Lett A. 2004;329(3):214.CrossRef
[30]
Zurück zum Zitat Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K. Enhancement of magnetic-field-induced strain in Ni–Fe–Ga–Co Heusler alloy. Scripta Mater. 2005;53(11):1237.CrossRef Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K. Enhancement of magnetic-field-induced strain in Ni–Fe–Ga–Co Heusler alloy. Scripta Mater. 2005;53(11):1237.CrossRef
[31]
Zurück zum Zitat Barandiarán J, Chernenko V, Lázpita P, Gutiérrez J, Feuchtwanger J. Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys Rev B. 2009;80(10):104404.CrossRef Barandiarán J, Chernenko V, Lázpita P, Gutiérrez J, Feuchtwanger J. Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys Rev B. 2009;80(10):104404.CrossRef
[32]
Zurück zum Zitat Liu E, Du Y, Chen J, Wang W, Zhang H, Wu G. Magnetostructural transformation and magnetoresponsive properties of MnNiGe1−x Sn x alloys. IEEE Trans Magn. 2011;47(10):4041.CrossRef Liu E, Du Y, Chen J, Wang W, Zhang H, Wu G. Magnetostructural transformation and magnetoresponsive properties of MnNiGe1−x Sn x alloys. IEEE Trans Magn. 2011;47(10):4041.CrossRef
[33]
Zurück zum Zitat Fang QL, Zhang JM, Zhao XM, Xu KW, Ji V. Magnetic properties and possible martensitic transformation in Mn2NiSi and Ni2MnSi Heusler alloys. J Magn Magn Mater. 2014;362:42.CrossRef Fang QL, Zhang JM, Zhao XM, Xu KW, Ji V. Magnetic properties and possible martensitic transformation in Mn2NiSi and Ni2MnSi Heusler alloys. J Magn Magn Mater. 2014;362:42.CrossRef
[34]
Zurück zum Zitat Liu Z, Ma X, Meng F, Wu G. Magnetic and anomalous transport properties in Fe2MnAl. J Alloys Compd. 2011;509(7):3219.CrossRef Liu Z, Ma X, Meng F, Wu G. Magnetic and anomalous transport properties in Fe2MnAl. J Alloys Compd. 2011;509(7):3219.CrossRef
[35]
Zurück zum Zitat Omori T, Watanabe K, Umetsu RY, Kainuma R, Ishida K. Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl Phys Lett. 2009;95(8):082508.CrossRef Omori T, Watanabe K, Umetsu RY, Kainuma R, Ishida K. Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl Phys Lett. 2009;95(8):082508.CrossRef
[36]
Zurück zum Zitat Sato M, Okazaki T, Furuya Y, Wuttig M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater Trans. 2003;44(3):372.CrossRef Sato M, Okazaki T, Furuya Y, Wuttig M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater Trans. 2003;44(3):372.CrossRef
[37]
Zurück zum Zitat Dogan E, Karaman I, Chumlyakov YI, Luo ZP. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011;59(3):1168.CrossRef Dogan E, Karaman I, Chumlyakov YI, Luo ZP. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011;59(3):1168.CrossRef
[38]
Zurück zum Zitat Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R. The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater. 2012;60(8):3545.CrossRef Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R. The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater. 2012;60(8):3545.CrossRef
[39]
Zurück zum Zitat Wang HF, Wang JM, Jiang CB, Xu HB. Phase transition and mechanical properties of Ni30Cu20Mn37+x Ga13–x (x = 0–4.5) alloys. Rare Met. 2014;33(5):547.CrossRef Wang HF, Wang JM, Jiang CB, Xu HB. Phase transition and mechanical properties of Ni30Cu20Mn37+x Ga13–x (x = 0–4.5) alloys. Rare Met. 2014;33(5):547.CrossRef
[40]
Zurück zum Zitat Li Z, Jing C, Zhang HL, Qiao YF, Cao SX, Zhang JC, Sun L. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy. J Appl Phys. 2009;106(8):083908.CrossRef Li Z, Jing C, Zhang HL, Qiao YF, Cao SX, Zhang JC, Sun L. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy. J Appl Phys. 2009;106(8):083908.CrossRef
[41]
Zurück zum Zitat Brown PJ, Crangle J, Kanomata T, Matsumoto M. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys Condens Mat. 2002;14:10159.CrossRef Brown PJ, Crangle J, Kanomata T, Matsumoto M. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys Condens Mat. 2002;14:10159.CrossRef
[42]
Zurück zum Zitat Buchelnikov VD, Sokolovskiy VV. Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys. Phys Met Matellogr. 2011;112(7):633.CrossRef Buchelnikov VD, Sokolovskiy VV. Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys. Phys Met Matellogr. 2011;112(7):633.CrossRef
[43]
Zurück zum Zitat Khan M, Dubenko I, Stadler S, Ali N. Magnetic and structural phase transitions in Heusler type alloys Ni2MnGa1−x In x . J Phys Condens Matter. 2004;16(29):5259.CrossRef Khan M, Dubenko I, Stadler S, Ali N. Magnetic and structural phase transitions in Heusler type alloys Ni2MnGa1−x In x . J Phys Condens Matter. 2004;16(29):5259.CrossRef
[44]
Zurück zum Zitat Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett. 2000;77(6):886.CrossRef Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett. 2000;77(6):886.CrossRef
[45]
Zurück zum Zitat Cherechukin AA, Takagi T, Matsumoto M, Buchel’nikov VD. Magnetocaloric effect in Ni2+x Mn1−x Ga Heusler alloys. Phys Lett A. 2004;326:146.CrossRef Cherechukin AA, Takagi T, Matsumoto M, Buchel’nikov VD. Magnetocaloric effect in Ni2+x Mn1−x Ga Heusler alloys. Phys Lett A. 2004;326:146.CrossRef
[46]
Zurück zum Zitat Peruman KV, Chokkalingam R, Mahendran M. Annealing effect on phase transformation in nano structured Ni–Mn–Ga ferromagnetic shape memory alloy. Phase Transit. 2010;83(7):509.CrossRef Peruman KV, Chokkalingam R, Mahendran M. Annealing effect on phase transformation in nano structured Ni–Mn–Ga ferromagnetic shape memory alloy. Phase Transit. 2010;83(7):509.CrossRef
[47]
Zurück zum Zitat Wang WH, Hu FX, Chen JL, Li YX, Wang Z, Wu GH. Magnetic properties and structural phase transformations of NiMnGa alloys. IEEE Trans Magn. 2001;37(4):2715.CrossRef Wang WH, Hu FX, Chen JL, Li YX, Wang Z, Wu GH. Magnetic properties and structural phase transformations of NiMnGa alloys. IEEE Trans Magn. 2001;37(4):2715.CrossRef
[48]
Zurück zum Zitat Wu GH, Yu CH, Meng LQ, Chen JL, Yang FM, Qi SR, Zhan WS, Wang Z, Zheng YF, Zhao LC. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl Phys Lett. 1999;75(19):2990.CrossRef Wu GH, Yu CH, Meng LQ, Chen JL, Yang FM, Qi SR, Zhan WS, Wang Z, Zheng YF, Zhao LC. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl Phys Lett. 1999;75(19):2990.CrossRef
[49]
Zurück zum Zitat Ma Y, Awaji S, Watanabe K, Matsumoto M, Kobayashi N. X-ray diffraction study of the structural phase transition of Ni2MnGa alloys in high magnetic fields. Solid State Commun. 2000;113:671.CrossRef Ma Y, Awaji S, Watanabe K, Matsumoto M, Kobayashi N. X-ray diffraction study of the structural phase transition of Ni2MnGa alloys in high magnetic fields. Solid State Commun. 2000;113:671.CrossRef
[50]
Zurück zum Zitat Wang WH, Chen JL, Gao SX, Wu GH, Wang Z, Zheng YF. Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. Conders Matter. 2001;13:2607.CrossRef Wang WH, Chen JL, Gao SX, Wu GH, Wang Z, Zheng YF. Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. Conders Matter. 2001;13:2607.CrossRef
[51]
Zurück zum Zitat Liu ZH, Zhang M, Wang WQ, Wang WH, Chen JL, Wu GH, Meng FB, Liu HY, Liu BD, Qu JP, Li YX. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J Appl Phys. 2002;92(9):5006.CrossRef Liu ZH, Zhang M, Wang WQ, Wang WH, Chen JL, Wu GH, Meng FB, Liu HY, Liu BD, Qu JP, Li YX. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J Appl Phys. 2002;92(9):5006.CrossRef
[52]
Zurück zum Zitat Wu GH, Wang WH, Chen JL, Ao L, Liu ZH, Zhan WS, Liang T, Xu HB. Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals. Appl Phys Lett. 2002;80(4):634.CrossRef Wu GH, Wang WH, Chen JL, Ao L, Liu ZH, Zhan WS, Liang T, Xu HB. Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals. Appl Phys Lett. 2002;80(4):634.CrossRef
[53]
Zurück zum Zitat Karaca H, Karaman I, Basaran B, Chumlyakov Y, Maier H. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 2006;54(1):233.CrossRef Karaca H, Karaman I, Basaran B, Chumlyakov Y, Maier H. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 2006;54(1):233.CrossRef
[54]
Zurück zum Zitat Karaman I, Karaca HE, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Mater. 2006;55(4):403.CrossRef Karaman I, Karaca HE, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Mater. 2006;55(4):403.CrossRef
[55]
Zurück zum Zitat Ingale B, Gopalan R, Raja MM, Chandrasekaran V, Ram S. Magnetostructural transformation, microstructure, and magnetocaloric effect in Ni–Mn–Ga Heusler alloys. J Appl Phys. 2007;102(1):013906.CrossRef Ingale B, Gopalan R, Raja MM, Chandrasekaran V, Ram S. Magnetostructural transformation, microstructure, and magnetocaloric effect in Ni–Mn–Ga Heusler alloys. J Appl Phys. 2007;102(1):013906.CrossRef
[56]
Zurück zum Zitat Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 2007;55(13):4253.CrossRef Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 2007;55(13):4253.CrossRef
[57]
Zurück zum Zitat Karaman I, Basaran B, Karaca HE, Karsilayan AI, Chumlyakov YI. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl Phys Lett. 2007;90(17):172505.CrossRef Karaman I, Basaran B, Karaca HE, Karsilayan AI, Chumlyakov YI. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl Phys Lett. 2007;90(17):172505.CrossRef
[58]
Zurück zum Zitat Kanomata T, Kitsunai Y, Sano K, Umetsu RY, Kainuma R, Miura Y, Shirai M. Magnetic properties of quaternary Heusler alloys Ni2−x Co x MnGa. Phys Rev B. 2009;80(21):214402.CrossRef Kanomata T, Kitsunai Y, Sano K, Umetsu RY, Kainuma R, Miura Y, Shirai M. Magnetic properties of quaternary Heusler alloys Ni2−x Co x MnGa. Phys Rev B. 2009;80(21):214402.CrossRef
[59]
Zurück zum Zitat Kikuchi D, Kanomata T, Yamaguchi Y, Nishihara H, Koyama K, Watanabe K. Magnetic properties of ferromagnetic shape memory alloys Ni2Mn1−xFexGa. J Alloys Compd. 2004;383:184.CrossRef Kikuchi D, Kanomata T, Yamaguchi Y, Nishihara H, Koyama K, Watanabe K. Magnetic properties of ferromagnetic shape memory alloys Ni2Mn1−xFexGa. J Alloys Compd. 2004;383:184.CrossRef
[60]
Zurück zum Zitat Fabbrici S, Kamarad J, Arnold Z, Casoli F, Paoluzi A, Bolzoni F, Cabassi R, Solzi M, Porcari G, Pernechele C. From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys. Acta Mater. 2011;59(1):412.CrossRef Fabbrici S, Kamarad J, Arnold Z, Casoli F, Paoluzi A, Bolzoni F, Cabassi R, Solzi M, Porcari G, Pernechele C. From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys. Acta Mater. 2011;59(1):412.CrossRef
[61]
Zurück zum Zitat Albertini F, Fabbrici S, Paoluzi A, Kamarad J, Arnold Z, Righi L, Solzi M, Porcari G, Pernechele C, Serrate D, Algarabel P. Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: structural, magnetic, and magnetoelastic properties. Mater Sci Forum. 2011;684:151.CrossRef Albertini F, Fabbrici S, Paoluzi A, Kamarad J, Arnold Z, Righi L, Solzi M, Porcari G, Pernechele C, Serrate D, Algarabel P. Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: structural, magnetic, and magnetoelastic properties. Mater Sci Forum. 2011;684:151.CrossRef
[62]
Zurück zum Zitat Li PP, Wang JM, Jiang CB. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys. Chin Phys B. 2011;20(2):028104.CrossRef Li PP, Wang JM, Jiang CB. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys. Chin Phys B. 2011;20(2):028104.CrossRef
[63]
Zurück zum Zitat Zhang L, Wang J, Hua H, Jiang C, Xu H. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: in-doped Ni–Mn–Ga alloys. Appl Phys Lett. 2014;105(11):112402.CrossRef Zhang L, Wang J, Hua H, Jiang C, Xu H. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: in-doped Ni–Mn–Ga alloys. Appl Phys Lett. 2014;105(11):112402.CrossRef
[64]
Zurück zum Zitat Barton LS, Lazott RT, Marsten ER. Magnetic properties of full Heusler alloys Ni2MnGa1−x Z x with Z = Sn or Zn. J Appl Phys. 2014;115(17):17A908.CrossRef Barton LS, Lazott RT, Marsten ER. Magnetic properties of full Heusler alloys Ni2MnGa1−x Z x with Z = Sn or Zn. J Appl Phys. 2014;115(17):17A908.CrossRef
[65]
Zurück zum Zitat Dong GF, Cai W, Gao ZY. Microstructure and martensitic transformation of Ni–Mn–Ga–Ti ferromagnetic shape memory alloys. J Alloys Compd. 2008;465:173.CrossRef Dong GF, Cai W, Gao ZY. Microstructure and martensitic transformation of Ni–Mn–Ga–Ti ferromagnetic shape memory alloys. J Alloys Compd. 2008;465:173.CrossRef
[66]
Zurück zum Zitat Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72(1):014412.CrossRef Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72(1):014412.CrossRef
[67]
Zurück zum Zitat Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73(17):174413.CrossRef Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73(17):174413.CrossRef
[68]
Zurück zum Zitat Sharma V, Chattopadhyay M, Roy S. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys Rev B. 2007;76(14):140401.CrossRef Sharma V, Chattopadhyay M, Roy S. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys Rev B. 2007;76(14):140401.CrossRef
[69]
Zurück zum Zitat Takenaga T, Hayashi K, Kajitani T. Structural and magnetic transition temperatures of full Heusler Ni–Mn–Sn alloys determined by Van der Pauw Method. J Chem Eng Jpn. 2007;40(13):1328.CrossRef Takenaga T, Hayashi K, Kajitani T. Structural and magnetic transition temperatures of full Heusler Ni–Mn–Sn alloys determined by Van der Pauw Method. J Chem Eng Jpn. 2007;40(13):1328.CrossRef
[70]
Zurück zum Zitat Barandiaran JM, Chernenko VA, Cesari E, Salas D, Lazpita P, Gutierrez J, Orue I. Magnetic influence on the martensitic transformation entropy in Ni–Mn–In metamagnetic alloy. Appl Phys Lett. 2013;102(7):071904.CrossRef Barandiaran JM, Chernenko VA, Cesari E, Salas D, Lazpita P, Gutierrez J, Orue I. Magnetic influence on the martensitic transformation entropy in Ni–Mn–In metamagnetic alloy. Appl Phys Lett. 2013;102(7):071904.CrossRef
[71]
Zurück zum Zitat Sokolov A, Zhang L, Dubenko I, Samanta T, Stadler S, Ali N. Evidence of martensitic phase transitions in magnetic Ni–Mn–In thin films. Appl Phys Lett. 2013;102(7):072407.CrossRef Sokolov A, Zhang L, Dubenko I, Samanta T, Stadler S, Ali N. Evidence of martensitic phase transitions in magnetic Ni–Mn–In thin films. Appl Phys Lett. 2013;102(7):072407.CrossRef
[72]
Zurück zum Zitat Aksoy S. Synthesis and characterization of NiMnIn nanoparticles. J Magn Magn Mater. 2015;373:236.CrossRef Aksoy S. Synthesis and characterization of NiMnIn nanoparticles. J Magn Magn Mater. 2015;373:236.CrossRef
[73]
Zurück zum Zitat Sharma VK, Chattopadhyay MK, Kumar R, Ganguli T, Tiwari P, Roy SB. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys Condens Mat. 2007;19(49):496207.CrossRef Sharma VK, Chattopadhyay MK, Kumar R, Ganguli T, Tiwari P, Roy SB. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys Condens Mat. 2007;19(49):496207.CrossRef
[74]
Zurück zum Zitat Aksoy S, Acet M, Deen P, Mañosa L, Planes A. Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys Rev B. 2009;79(21):212401.CrossRef Aksoy S, Acet M, Deen P, Mañosa L, Planes A. Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys Rev B. 2009;79(21):212401.CrossRef
[75]
Zurück zum Zitat Khan M, Dubenko I, Stadler S, Ali N. Magnetostructural phase transitions in Ni50Mn25+x Sb25−x Heusler alloys. J Phys Condens Mat. 2008;20(23):235204.CrossRef Khan M, Dubenko I, Stadler S, Ali N. Magnetostructural phase transitions in Ni50Mn25+x Sb25−x Heusler alloys. J Phys Condens Mat. 2008;20(23):235204.CrossRef
[76]
Zurück zum Zitat Planes A, Mañosa L, Acet M. Recent progress and future perspectives in magnetic and metamagnetic shape-memory heusler alloys. Mater Sci Forum. 2013;738–739:391.CrossRef Planes A, Mañosa L, Acet M. Recent progress and future perspectives in magnetic and metamagnetic shape-memory heusler alloys. Mater Sci Forum. 2013;738–739:391.CrossRef
[77]
Zurück zum Zitat Yu SY, Liu ZH, Liu GD, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX. Large magnetoresistance in single-crystalline Ni50Mn50−x In x alloys (x = 14–16) upon martensitic transformation. Appl Phys Lett. 2006;89(16):162503.CrossRef Yu SY, Liu ZH, Liu GD, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX. Large magnetoresistance in single-crystalline Ni50Mn50−x In x alloys (x = 14–16) upon martensitic transformation. Appl Phys Lett. 2006;89(16):162503.CrossRef
[78]
Zurück zum Zitat Krenke T, Duman E, Acet M, Wassermann E, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2007;75(10):104414.CrossRef Krenke T, Duman E, Acet M, Wassermann E, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2007;75(10):104414.CrossRef
[79]
Zurück zum Zitat Nayak AK, Suresh KG, Nigam AK. Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys. 2009;42(3):035009.CrossRef Nayak AK, Suresh KG, Nigam AK. Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys. 2009;42(3):035009.CrossRef
[80]
Zurück zum Zitat Ito W, Imano Y, Kainuma R, Sutou Y, Oikawa K, Ishida K. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall Mater Trans A. 2007;38(4):759.CrossRef Ito W, Imano Y, Kainuma R, Sutou Y, Oikawa K, Ishida K. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall Mater Trans A. 2007;38(4):759.CrossRef
[81]
Zurück zum Zitat Karaca HE, Karaman I, Brewer A, Basaran B, Chumlyakov YI, Maier HJ. Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scr Mater. 2008;58(10):815.CrossRef Karaca HE, Karaman I, Brewer A, Basaran B, Chumlyakov YI, Maier HJ. Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scr Mater. 2008;58(10):815.CrossRef
[82]
Zurück zum Zitat Lu B, Xiao F, Yan A, Liu J. Elastocaloric effect in a textured polycrystalline Ni–Mn–In–Co metamagnetic shape memory alloy. Appl Phys Lett. 2014;105(16):161905.CrossRef Lu B, Xiao F, Yan A, Liu J. Elastocaloric effect in a textured polycrystalline Ni–Mn–In–Co metamagnetic shape memory alloy. Appl Phys Lett. 2014;105(16):161905.CrossRef
[83]
Zurück zum Zitat Xu X, Kihara T, Tokunaga M, Matsuo A, Ito W, Umetsu RY, Kindo K, Kainuma R. Magnetic field hysteresis under various sweeping rates for Ni–Co–Mn–In metamagnetic shape memory alloys. Appl Phys Lett. 2013;103(12):122406.CrossRef Xu X, Kihara T, Tokunaga M, Matsuo A, Ito W, Umetsu RY, Kindo K, Kainuma R. Magnetic field hysteresis under various sweeping rates for Ni–Co–Mn–In metamagnetic shape memory alloys. Appl Phys Lett. 2013;103(12):122406.CrossRef
[84]
Zurück zum Zitat Emre B, Yüce S, Stern-Taulats E, Planes A, Fabbrici S, Albertini F, Mañosa L. Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys. J Appl Phys. 2013;113(21):213905.CrossRef Emre B, Yüce S, Stern-Taulats E, Planes A, Fabbrici S, Albertini F, Mañosa L. Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys. J Appl Phys. 2013;113(21):213905.CrossRef
[85]
Zurück zum Zitat Kihara T, Xu X, Ito W, Kainuma R, Tokunaga M. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn. Phys Rev B. 2014;90(21):214409.CrossRef Kihara T, Xu X, Ito W, Kainuma R, Tokunaga M. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn. Phys Rev B. 2014;90(21):214409.CrossRef
[86]
Zurück zum Zitat Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J, Cesari E, Rodríguez-Velamazán J. Long-range atomic order and entropy change at the martensitic transformation in a Ni–Mn–In–Co metamagnetic shape memory alloy. Entropy. 2014;16(5):2756.CrossRef Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J, Cesari E, Rodríguez-Velamazán J. Long-range atomic order and entropy change at the martensitic transformation in a Ni–Mn–In–Co metamagnetic shape memory alloy. Entropy. 2014;16(5):2756.CrossRef
[87]
Zurück zum Zitat Chen F, Tong YX, Tian B, Li L, Zheng YF, Liu Y. Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. J Magn Magn Mater. 2013;347:72.CrossRef Chen F, Tong YX, Tian B, Li L, Zheng YF, Liu Y. Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. J Magn Magn Mater. 2013;347:72.CrossRef
[88]
Zurück zum Zitat Chen X, Naik VB, Mahendiran R, Ramanujan RV. Optimization of Ni–Co–Mn–Sn Heusler alloy composition for near room temperature magnetic cooling. J Alloys Compd. 2015;618:187.CrossRef Chen X, Naik VB, Mahendiran R, Ramanujan RV. Optimization of Ni–Co–Mn–Sn Heusler alloy composition for near room temperature magnetic cooling. J Alloys Compd. 2015;618:187.CrossRef
[89]
Zurück zum Zitat Emre B, Bruno NM. Yuce Emre S, Karaman I. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Appl Phys Lett. 2014;105(23):231910.CrossRef Emre B, Bruno NM. Yuce Emre S, Karaman I. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Appl Phys Lett. 2014;105(23):231910.CrossRef
[90]
Zurück zum Zitat Chen F, Tong YX, Tian B, Li L, Zheng YF. Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Met. 2014;33(5):511.CrossRef Chen F, Tong YX, Tian B, Li L, Zheng YF. Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Met. 2014;33(5):511.CrossRef
[91]
Zurück zum Zitat Nayak AK, Suresh KG, Nigam AK, Coelho AA, Gama S. Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy. J Appl Phys. 2009;106(5):053901.CrossRef Nayak AK, Suresh KG, Nigam AK, Coelho AA, Gama S. Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy. J Appl Phys. 2009;106(5):053901.CrossRef
[92]
Zurück zum Zitat Nayak AK, Suresh KG, Nigam AK. Irreversibility of field-induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies. Appl Phys Lett. 2010;96(11):112503.CrossRef Nayak AK, Suresh KG, Nigam AK. Irreversibility of field-induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies. Appl Phys Lett. 2010;96(11):112503.CrossRef
[93]
Zurück zum Zitat Nayak AK, Suresh KG, Nigam AK. Anomalous effects of repeated martensitic transitions on the transport, magnetic and thermal properties in Ni–Co–Mn–Sb Heusler alloy. Acta Mater. 2011;59(8):3304.CrossRef Nayak AK, Suresh KG, Nigam AK. Anomalous effects of repeated martensitic transitions on the transport, magnetic and thermal properties in Ni–Co–Mn–Sb Heusler alloy. Acta Mater. 2011;59(8):3304.CrossRef
[94]
Zurück zum Zitat Sahoo R, Raj Kumar DM, Arvindha Babu D, Suresh K, Nigam G, Manivel AK, Raja M. Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni–Co–Mn–Sb melt spun ribbons. J Magn Magn Mater. 2013;347:95.CrossRef Sahoo R, Raj Kumar DM, Arvindha Babu D, Suresh K, Nigam G, Manivel AK, Raja M. Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni–Co–Mn–Sb melt spun ribbons. J Magn Magn Mater. 2013;347:95.CrossRef
[95]
Zurück zum Zitat Sahoo R, Nayak AK, Suresh KG, Nigam AK. Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys. J Appl Phys. 2011;109(7):07A921.CrossRef Sahoo R, Nayak AK, Suresh KG, Nigam AK. Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys. J Appl Phys. 2011;109(7):07A921.CrossRef
[96]
Zurück zum Zitat Xuan HC, Shen LJ, Tang T, Cao QQ, Wang DH, Du YW. Magnetic-field-induced reverse martensitic transformation and large magnetoresistance in Ni50−x Co x Mn32Al18 Heusler alloys. Appl Phys Lett. 2012;100(17):172410.CrossRef Xuan HC, Shen LJ, Tang T, Cao QQ, Wang DH, Du YW. Magnetic-field-induced reverse martensitic transformation and large magnetoresistance in Ni50−x Co x Mn32Al18 Heusler alloys. Appl Phys Lett. 2012;100(17):172410.CrossRef
[97]
Zurück zum Zitat Rios S, Bufford D, Karaman I, Wang H, Zhang X. Magnetic field induced phase transformation in polycrystalline NiCoMnAl thin films. Appl Phys Lett. 2013;103(13):132404.CrossRef Rios S, Bufford D, Karaman I, Wang H, Zhang X. Magnetic field induced phase transformation in polycrystalline NiCoMnAl thin films. Appl Phys Lett. 2013;103(13):132404.CrossRef
[98]
Zurück zum Zitat Xu X, Katakura I, Kihara T, Tokunaga M, Ito W, Umetsu RY, Kainuma R. Optical microscopic study on NiCoMnAl metamagnetic shape memory alloy by in situ observation under a pulsed high magnetic field. Mater Trans. 2013;54(3):357.CrossRef Xu X, Katakura I, Kihara T, Tokunaga M, Ito W, Umetsu RY, Kainuma R. Optical microscopic study on NiCoMnAl metamagnetic shape memory alloy by in situ observation under a pulsed high magnetic field. Mater Trans. 2013;54(3):357.CrossRef
[99]
Zurück zum Zitat Xu X, Ito W, Tokunaga M, Kihara T, Oka K, Umetsu R, Kanomata T, Kainuma R. The thermal transformation arrest phenomenon in NiCoMnAl Heusler alloys. Metals. 2013;3(3):298.CrossRef Xu X, Ito W, Tokunaga M, Kihara T, Oka K, Umetsu R, Kanomata T, Kainuma R. The thermal transformation arrest phenomenon in NiCoMnAl Heusler alloys. Metals. 2013;3(3):298.CrossRef
[100]
Zurück zum Zitat Singh R, Kumar Srivastava S, Nigam AK, Khovaylo VV, Varga LK, Chatterjee R. Use of Arrott plots to identify Néel temperature (T N) in metamagnetic Ni48Co6Mn26Al20 polycrystalline ribbons. J Appl Phys. 2013;114(24):243911.CrossRef Singh R, Kumar Srivastava S, Nigam AK, Khovaylo VV, Varga LK, Chatterjee R. Use of Arrott plots to identify Néel temperature (T N) in metamagnetic Ni48Co6Mn26Al20 polycrystalline ribbons. J Appl Phys. 2013;114(24):243911.CrossRef
Metadaten
Titel
Recent progress in Heusler-type magnetic shape memory alloys
verfasst von
Guang-Hua Yu
Yun-Li Xu
Zhu-Hong Liu
Hong-Mei Qiu
Ze-Ya Zhu
Xiang-Ping Huang
Li-Qing Pan
Publikationsdatum
01.08.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2015
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-015-0534-1

Weitere Artikel der Ausgabe 8/2015

Rare Metals 8/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.