Skip to main content
Top
Published in: Progress in Additive Manufacturing 4/2018

10-05-2018 | Full Research Article

Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers

Authors: Florian Hengsbach, Peter Koppa, Martin Joachim Holzweissig, Mehmet Esat Aydinöz, Alexander Taube, Kay-Peter Hoyer, Oleksiy Starykov, Babette Tonn, Thomas Niendorf, Thomas Tröster, Mirko Schaper

Published in: Progress in Additive Manufacturing | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the current work, a functionally graded multi-material consisting of stainless steel 316L and hot work tool steel H13 has been fabricated by additive manufacturing (AM). Due to the modification of the recoating apparatus, a lean, multi-material AM process can be achieved via inline selective laser melting. The generated functionally graded specimens are characterized by an equiaxed grain growth at the interfaces of the steel layers, which results in excellent bonding of both constituents. Concerning the mechanical properties, tensile tests confirm that failure occurs within the material layer exhibiting the lower tensile strength. Further, this work analyzes microstructural developments in the melt pools which can predominately be described by the Marangoni effect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef
2.
go back to reference Wohlers T (2013) Wohlers report 2013: annual worldwide progress report. 3D Printing and Additive Manufacturing State of the Industry, Colorado Wohlers T (2013) Wohlers report 2013: annual worldwide progress report. 3D Printing and Additive Manufacturing State of the Industry, Colorado
3.
go back to reference Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14CrossRef
4.
go back to reference Riemer A, Leuders S, Thöne M, Richard HA, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25CrossRef Riemer A, Leuders S, Thöne M, Richard HA, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25CrossRef
5.
go back to reference Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T, Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B 46 (2015) 545–549CrossRef Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T, Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B 46 (2015) 545–549CrossRef
6.
go back to reference Niendorf T, Leuders S, Riemer A, Brenne F, Tröster T, Richard HA, Schwarze D (2014) Functionally graded alloys obtained by additive manufacturing. Adv Eng Mater 16:857–861CrossRef Niendorf T, Leuders S, Riemer A, Brenne F, Tröster T, Richard HA, Schwarze D (2014) Functionally graded alloys obtained by additive manufacturing. Adv Eng Mater 16:857–861CrossRef
7.
go back to reference Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193CrossRef Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193CrossRef
8.
go back to reference Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models. Technol Forecast Soc Chang 102:225–239CrossRef Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models. Technol Forecast Soc Chang 102:225–239CrossRef
9.
go back to reference Niendorf T, Leuders S, Riemer A, Richard HA, Tröster T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting. Metall Mater Trans B 44:794–796CrossRef Niendorf T, Leuders S, Riemer A, Richard HA, Tröster T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting. Metall Mater Trans B 44:794–796CrossRef
10.
go back to reference Vilaro T, Colin C, Bartout JD, Nazé L, Sennour M (2012) Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A 534:446–451CrossRef Vilaro T, Colin C, Bartout JD, Nazé L, Sennour M (2012) Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A 534:446–451CrossRef
11.
go back to reference Wilson JM, Shin YC (2012) Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Technol 207:517–522CrossRef Wilson JM, Shin YC (2012) Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Technol 207:517–522CrossRef
12.
go back to reference Chlebus E, Kuźnicka B, Dziedzic R, Kurzynowski T (2015) Titanium alloyed with rhenium by selective laser melting. Mater Sci Eng A 620:155–163CrossRef Chlebus E, Kuźnicka B, Dziedzic R, Kurzynowski T (2015) Titanium alloyed with rhenium by selective laser melting. Mater Sci Eng A 620:155–163CrossRef
13.
go back to reference Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum. J Alloy Compd 660:461–470CrossRef Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum. J Alloy Compd 660:461–470CrossRef
14.
go back to reference Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng 100:1405–1413CrossRef Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng 100:1405–1413CrossRef
15.
go back to reference Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting. Int J Fatigue 48:300–307CrossRef Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting. Int J Fatigue 48:300–307CrossRef
16.
go back to reference Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Niendorf T (2015) Functional encapsulation of laser melted Inconel 718 by Arc-PVD and HVOF for post compacting by hot isostatic pressing. Powder Metall 58:259–264CrossRef Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Niendorf T (2015) Functional encapsulation of laser melted Inconel 718 by Arc-PVD and HVOF for post compacting by hot isostatic pressing. Powder Metall 58:259–264CrossRef
17.
go back to reference Konchakova N, Müller R (2012) Microcrack evolution in functionally graded material under dynamic loading. Proc Appl Math Mech 12:139–140CrossRef Konchakova N, Müller R (2012) Microcrack evolution in functionally graded material under dynamic loading. Proc Appl Math Mech 12:139–140CrossRef
18.
go back to reference Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng A 362:81–106CrossRef Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng A 362:81–106CrossRef
19.
go back to reference Liu ZH, Zhang DQ, Sing SL, Chua CK, Loh LE (2014) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 94:116–125CrossRef Liu ZH, Zhang DQ, Sing SL, Chua CK, Loh LE (2014) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 94:116–125CrossRef
20.
go back to reference Niendorf T, Brenne F, Hoyer P, Schwarze D, Schaper M, Grothe R, Wiesener M, Grundmeier G, Maier HJ (2015) Processing of new materials by additive manufacturing. Metall Mat Trans A 46:2829–2833CrossRef Niendorf T, Brenne F, Hoyer P, Schwarze D, Schaper M, Grothe R, Wiesener M, Grundmeier G, Maier HJ (2015) Processing of new materials by additive manufacturing. Metall Mat Trans A 46:2829–2833CrossRef
21.
go back to reference Yuan P, Gu D (2015) Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites. J Phys D Appl Phys 48:35303CrossRef Yuan P, Gu D (2015) Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites. J Phys D Appl Phys 48:35303CrossRef
22.
go back to reference Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S (2014) Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 30:e79–e88CrossRef Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S (2014) Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 30:e79–e88CrossRef
23.
go back to reference Sing SL, Lam LP, Zhang DQ, Liu ZH, Chua CK (2015) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 107:220–227CrossRef Sing SL, Lam LP, Zhang DQ, Liu ZH, Chua CK (2015) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 107:220–227CrossRef
24.
go back to reference Gupta A, Talha M (2015) Recent development in modeling and analysis of functionally graded materials and structures. Prog Aerosp Sci 79:1–14CrossRef Gupta A, Talha M (2015) Recent development in modeling and analysis of functionally graded materials and structures. Prog Aerosp Sci 79:1–14CrossRef
25.
go back to reference Ao SI (2012) World congress on engineering: WCE 2012 4–6 July. Imperial College London, London, UK, Newswood Ltd; International Association of Engineers, Hong Kong Ao SI (2012) World congress on engineering: WCE 2012 4–6 July. Imperial College London, London, UK, Newswood Ltd; International Association of Engineers, Hong Kong
26.
go back to reference Kawasaki A, Watanabe R (1997) Concept and P/M fabrication of functionally gradient materials. Ceram Int 23:73–83CrossRef Kawasaki A, Watanabe R (1997) Concept and P/M fabrication of functionally gradient materials. Ceram Int 23:73–83CrossRef
27.
go back to reference Markworth AJ, Ramesh KS, Parks WP Jr, Modelling studies applied to functionally graded materials (1995) J Mater Sci 1995 2183–2193CrossRef Markworth AJ, Ramesh KS, Parks WP Jr, Modelling studies applied to functionally graded materials (1995) J Mater Sci 1995 2183–2193CrossRef
28.
go back to reference Udupa G, Rao SS, Gangadharan KV (2014) Functionally graded composite materials. Procedia Mater Sci 5:1291–1299CrossRef Udupa G, Rao SS, Gangadharan KV (2014) Functionally graded composite materials. Procedia Mater Sci 5:1291–1299CrossRef
29.
go back to reference Sobczak JJ, Drenchev L (2013) Metallic functionally graded materials. J Mater Sci Technol 29:297–316CrossRef Sobczak JJ, Drenchev L (2013) Metallic functionally graded materials. J Mater Sci Technol 29:297–316CrossRef
30.
go back to reference Nakai Y, Mishima F, Akiyama Y, Nishijima S (2010) Development of magnetic separation system for powder separation. IEEE Trans Appl Supercond 20:941–944CrossRef Nakai Y, Mishima F, Akiyama Y, Nishijima S (2010) Development of magnetic separation system for powder separation. IEEE Trans Appl Supercond 20:941–944CrossRef
31.
go back to reference Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
32.
go back to reference Thijs L, Kempen K, Kruth J-P, van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819CrossRef Thijs L, Kempen K, Kruth J-P, van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819CrossRef
33.
go back to reference Kurz W, Bezençon C, Gäumann M (2001) Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater 2:185–191CrossRef Kurz W, Bezençon C, Gäumann M (2001) Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater 2:185–191CrossRef
34.
go back to reference Gäumann M, Henry S. Cléton F, Wagnière J-D, Kurz W, Gäumann M, Henry S, Cléton F, Wagnière J-D, Kurz W (1999) Epitaxial laser metal forming: analysis of microstructure formation/epitaxial laser metal forming. Mater Sci Eng A 271 271:232–241CrossRef Gäumann M, Henry S. Cléton F, Wagnière J-D, Kurz W, Gäumann M, Henry S, Cléton F, Wagnière J-D, Kurz W (1999) Epitaxial laser metal forming: analysis of microstructure formation/epitaxial laser metal forming. Mater Sci Eng A 271 271:232–241CrossRef
35.
go back to reference Edmonds DV, He K, Rizzo FC, de Cooman BC, Matlock DK, Speer JG (2006) Quenching and partitioning martensite—a novel steel heat treatment. Mater Sci Eng A 438–440:25–34CrossRef Edmonds DV, He K, Rizzo FC, de Cooman BC, Matlock DK, Speer JG (2006) Quenching and partitioning martensite—a novel steel heat treatment. Mater Sci Eng A 438–440:25–34CrossRef
36.
go back to reference Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279–1288CrossRef Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279–1288CrossRef
37.
38.
go back to reference Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng A 584:21–31CrossRef Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng A 584:21–31CrossRef
39.
go back to reference Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213:606–613CrossRef Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213:606–613CrossRef
40.
go back to reference Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Heat Mass Transfer 30:1709–1719CrossRef Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Heat Mass Transfer 30:1709–1719CrossRef
41.
42.
go back to reference Fredriksson H, Akerlind U (2006) Materials processing at casting. Wiley, HobokenCrossRef Fredriksson H, Akerlind U (2006) Materials processing at casting. Wiley, HobokenCrossRef
43.
go back to reference Gandin MRCh-A (1994) A coupled finite element-cellular automation model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater 42:2233–2246CrossRef Gandin MRCh-A (1994) A coupled finite element-cellular automation model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater 42:2233–2246CrossRef
44.
go back to reference Gu D, Yuan P (2015) Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites. J Appl Phys 118:233109CrossRef Gu D, Yuan P (2015) Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites. J Appl Phys 118:233109CrossRef
45.
go back to reference Yin H, Emi T (2003) Marangoni flow at the gas/melt interface of steel/Marangoni flow at the gas/melt interface of steel. Metall Mater Trans B 34:483–493CrossRef Yin H, Emi T (2003) Marangoni flow at the gas/melt interface of steel/Marangoni flow at the gas/melt interface of steel. Metall Mater Trans B 34:483–493CrossRef
46.
go back to reference Antony NAK (2015) Studies on energy penetration and Marangoni effect during laser melting process. J Eng Sci Technol 10:509–525 Antony NAK (2015) Studies on energy penetration and Marangoni effect during laser melting process. J Eng Sci Technol 10:509–525
47.
go back to reference Ono Y, Ichi S, Matsumoto Ji (1975) Diffusion of chromium, manganese, and nickel in molten iron. Trans Jpn Inst Metals 16:415–422CrossRef Ono Y, Ichi S, Matsumoto Ji (1975) Diffusion of chromium, manganese, and nickel in molten iron. Trans Jpn Inst Metals 16:415–422CrossRef
48.
go back to reference Zhong Y, Liu L, Wikman S, Cui D, Shen Z (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178CrossRef Zhong Y, Liu L, Wikman S, Cui D, Shen Z (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178CrossRef
49.
go back to reference Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254:975–979CrossRef Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254:975–979CrossRef
Metadata
Title
Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers
Authors
Florian Hengsbach
Peter Koppa
Martin Joachim Holzweissig
Mehmet Esat Aydinöz
Alexander Taube
Kay-Peter Hoyer
Oleksiy Starykov
Babette Tonn
Thomas Niendorf
Thomas Tröster
Mirko Schaper
Publication date
10-05-2018
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 4/2018
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-018-0044-4

Other articles of this Issue 4/2018

Progress in Additive Manufacturing 4/2018 Go to the issue

Premium Partners