Skip to main content
Top
Published in: Journal of Electronic Materials 9/2021

17-06-2021 | Original Research Article

Insights on the Effect of Applied Potential on the Properties of Electrodeposited p-Type Cuprous Oxide (Cu2O) Thin Films

Published in: Journal of Electronic Materials | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the effect of the applied cathodic potential on properties of electrodeposited p-type Cu2O thin films was investigated. Electrochemical deposition was carried out on indium tin oxide (ITO) substrate from alkaline Cu(II) lactate-based solution at different cathodic potentials (− 0.60 to − 0.80 V vs. Ag/AgCl) without subsequent annealing. It was shown that changing the electrodeposition applied potential could tune both the phase structure and band gap energy of the Cu2O thin films. The morphological, optical, and structural characterizations of the deposits were carried out using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-VIS spectroscopy, respectively. FESEM observations of the as-prepared deposits revealed uniform, rough and desert rose-like crystallites composed of square or triangular pyramidal and truncated polyhedral morphologies. The XRD investigation showed that the films were crystalline and revealed the presence of two other sub-stoichiometric copper oxide phases (Cu4O3 and Cu64O), depending on the applied potential. The crystallite size, evaluated using the Scherer formula, varied tightly with the cathode potential and increased in the − 0.65 to − 0.75 V potential range, indicating that the films are of better crystallization. The optical band gaps, deduced from experimental Tauc plots, were found to be 2.33, 1.98, 2.25, 2.27 and 2.50 eV for thin films deposited at − 0.60, − 0.65, − 0.70, − 0.75 and − 0.8 V vs Ag/AgCl, respectively. A mechanism of the phase formation is proposed and discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Ismail, N.M. El-Shafai, A. El-Shaer, and M. Abdelfatah, Mater. Sci. Semicond. Process. 120, 105335 (2020).CrossRef W. Ismail, N.M. El-Shafai, A. El-Shaer, and M. Abdelfatah, Mater. Sci. Semicond. Process. 120, 105335 (2020).CrossRef
3.
go back to reference Y. Qu, J. Qian, J. Liu, L. Yao, L. Zhao, X. Song, P. Zhang, and L. Gao, J. Electrochem. Soc. 166, H452 (2019).CrossRef Y. Qu, J. Qian, J. Liu, L. Yao, L. Zhao, X. Song, P. Zhang, and L. Gao, J. Electrochem. Soc. 166, H452 (2019).CrossRef
4.
go back to reference R. Akbari, G. Godeau, M. Mohammadizadeh, F. Guittard, and T. Darmanin, Appl. Surf. Sci. 503, 144094 (2020).CrossRef R. Akbari, G. Godeau, M. Mohammadizadeh, F. Guittard, and T. Darmanin, Appl. Surf. Sci. 503, 144094 (2020).CrossRef
5.
go back to reference W. Zhang, C. Xu, Y. Hu, S. Yang, L. Ma, L. Wang, P. Zhao, C. Wang, J. Ma, and Z. Jin, Nano Energy 73, 104796 (2020).CrossRef W. Zhang, C. Xu, Y. Hu, S. Yang, L. Ma, L. Wang, P. Zhao, C. Wang, J. Ma, and Z. Jin, Nano Energy 73, 104796 (2020).CrossRef
6.
go back to reference V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C. Hu, P. Singh, P. Raizada, W. Peng, and S.S. Lam, Chem. Eng. J. 402, 126184 (2020).CrossRef V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C. Hu, P. Singh, P. Raizada, W. Peng, and S.S. Lam, Chem. Eng. J. 402, 126184 (2020).CrossRef
7.
go back to reference W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, Adv. Sci. 5, 1700275 (2018).CrossRef W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, Adv. Sci. 5, 1700275 (2018).CrossRef
8.
9.
go back to reference M.A. Hossain, R. Al-Gaashani, H. Hamoudi, M.J. Al Marri, I.A. Hussein, A. Belaidi, B.A. Merzougui, F.H. Alharbi, and N. Tabet, Mater. Sci. Semicond. Process. 63, 203 (2017).CrossRef M.A. Hossain, R. Al-Gaashani, H. Hamoudi, M.J. Al Marri, I.A. Hussein, A. Belaidi, B.A. Merzougui, F.H. Alharbi, and N. Tabet, Mater. Sci. Semicond. Process. 63, 203 (2017).CrossRef
10.
go back to reference A.A. Hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar, and K. Bouabid, Mater. Today: Proc. 22, 89 (2020). A.A. Hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar, and K. Bouabid, Mater. Today: Proc. 22, 89 (2020).
11.
12.
go back to reference S. Choudhary, J. V. N. Sarma, and S. Gangopadhyay, Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films, in (ETMN, Baroda, India, 1724 020116 (2016). S. Choudhary, J. V. N. Sarma, and S. Gangopadhyay, Growth and characterization of single phase Cu2O by thermal oxidation of thin copper films, in (ETMN, Baroda, India, 1724 020116 (2016).
13.
go back to reference T. Ikenoue, T. Kawai, R. Wakashima, M. Miyake, and T. Hirato, Appl. Phys. Express 12, 055509 (2019).CrossRef T. Ikenoue, T. Kawai, R. Wakashima, M. Miyake, and T. Hirato, Appl. Phys. Express 12, 055509 (2019).CrossRef
14.
go back to reference M.A. Badillo-Ávila, R. Castanedo-Pérez, G. Torres-Delgado, J. Márquez-Marín, and O. Zelaya-Ángel, Mater. Sci. Semicond. Process. 74, 203 (2018).CrossRef M.A. Badillo-Ávila, R. Castanedo-Pérez, G. Torres-Delgado, J. Márquez-Marín, and O. Zelaya-Ángel, Mater. Sci. Semicond. Process. 74, 203 (2018).CrossRef
15.
go back to reference L. Yuan-Gee, J.-R. Wang, M.-J. Chuang, D.-W. Chen, and K.-H. Hou, Int. J. Electrochem. Sci. 12, 507 (2017). L. Yuan-Gee, J.-R. Wang, M.-J. Chuang, D.-W. Chen, and K.-H. Hou, Int. J. Electrochem. Sci. 12, 507 (2017).
16.
go back to reference X. Yu, X. Tang, J. Li, J. Zhang, S. Kou, J. Zhao, and B. Yao, J. Electrochem. Soc. 164, D999 (2017).CrossRef X. Yu, X. Tang, J. Li, J. Zhang, S. Kou, J. Zhao, and B. Yao, J. Electrochem. Soc. 164, D999 (2017).CrossRef
17.
go back to reference M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, and J. Heo, Thin Solid Films 661, 132 (2018).CrossRef M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, and J. Heo, Thin Solid Films 661, 132 (2018).CrossRef
18.
go back to reference T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, and J.A. Switzer, Chem. Mater. 8, 2499 (1996).CrossRef T.D. Golden, M.G. Shumsky, Y. Zhou, R.A. VanderWerf, R.A. Van Leeuwen, and J.A. Switzer, Chem. Mater. 8, 2499 (1996).CrossRef
19.
go back to reference M. Abdelfatah, W. Ismail, and A. El-Shaer, Mater. Sci. Semicond. Process. 81, 44 (2018).CrossRef M. Abdelfatah, W. Ismail, and A. El-Shaer, Mater. Sci. Semicond. Process. 81, 44 (2018).CrossRef
20.
go back to reference M.M. Moharam, E.M. Elsayed, J.C. Nino, R.M. Abou-Shahba, and M.M. Rashad, Thin Solid Films 616, 760 (2016).CrossRef M.M. Moharam, E.M. Elsayed, J.C. Nino, R.M. Abou-Shahba, and M.M. Rashad, Thin Solid Films 616, 760 (2016).CrossRef
21.
go back to reference X. Jiang, M. Zhang, S. Shi, G. He, X. Song, and Z. Sun, J. Electrochem. Soc. 161, D640 (2014).CrossRef X. Jiang, M. Zhang, S. Shi, G. He, X. Song, and Z. Sun, J. Electrochem. Soc. 161, D640 (2014).CrossRef
22.
go back to reference S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia, Semicond. Sci. Tech. 28, 115005 (2013).CrossRef S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia, Semicond. Sci. Tech. 28, 115005 (2013).CrossRef
23.
go back to reference K.D. Singh, S.C. Jain, T.D. Sakore, and A.B. Biswas, Z. Kristallogr. 141, 473 (1975).CrossRef K.D. Singh, S.C. Jain, T.D. Sakore, and A.B. Biswas, Z. Kristallogr. 141, 473 (1975).CrossRef
24.
25.
go back to reference S. Bijani, R. Schrebler, E.A. Dalchiele, M. Gabas, L. Martínez, and J.R. Ramos-Barrado, J. Phys. Chem. C 115, 21373 (2011).CrossRef S. Bijani, R. Schrebler, E.A. Dalchiele, M. Gabas, L. Martínez, and J.R. Ramos-Barrado, J. Phys. Chem. C 115, 21373 (2011).CrossRef
26.
27.
go back to reference B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed (Pearson Education Limited, UK, 2014, p. 104). B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed (Pearson Education Limited, UK, 2014, p. 104).
29.
30.
31.
32.
go back to reference S. Rühle, H.N. Barad, Y. Bouhadana, D.A. Keller, A. Ginsburg, K. Shimanovich, K. Majhi, R. Lovrincic, A.Y. Anderson, and A. Zaban, Phys. Chem. Chem. Phys. 16, 7066 (2014).CrossRef S. Rühle, H.N. Barad, Y. Bouhadana, D.A. Keller, A. Ginsburg, K. Shimanovich, K. Majhi, R. Lovrincic, A.Y. Anderson, and A. Zaban, Phys. Chem. Chem. Phys. 16, 7066 (2014).CrossRef
33.
go back to reference Y. Zhou, J. Zhao, Y. Liu, R.J.H. Ng, and J.K.W. Yang, Mater. Sci. Semicond. Process. 121, 105444 (2021).CrossRef Y. Zhou, J. Zhao, Y. Liu, R.J.H. Ng, and J.K.W. Yang, Mater. Sci. Semicond. Process. 121, 105444 (2021).CrossRef
34.
go back to reference M. Benaicha, M. Hamla, and S. Derbal, Int. J. Electrochem. Sci. 11, 4909 (2016).CrossRef M. Benaicha, M. Hamla, and S. Derbal, Int. J. Electrochem. Sci. 11, 4909 (2016).CrossRef
35.
go back to reference M. Fox, Optical Properties of Solids, 2nd ed., (N.Y.: Oxford University Press, 2010). M. Fox, Optical Properties of Solids, 2nd ed., (N.Y.: Oxford University Press, 2010).
36.
go back to reference N.F. Mott, and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., (Oxford: Clarendon Press, 2012). N.F. Mott, and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed., (Oxford: Clarendon Press, 2012).
37.
go back to reference S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors (US, Boston, MA: Springer, 1999).CrossRef S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors (US, Boston, MA: Springer, 1999).CrossRef
38.
go back to reference D.S. Murali, and A. Subrahmanyam, J. Phys. D: Appl. Phys. 49, 375102 (2016).CrossRef D.S. Murali, and A. Subrahmanyam, J. Phys. D: Appl. Phys. 49, 375102 (2016).CrossRef
39.
go back to reference J.P. Zhang, L.D. Zhang, L.Q. Zhu, Y. Zhang, M. Liu, and X.J. Wang, J. Appl. Phys. 102, 114903 (2007).CrossRef J.P. Zhang, L.D. Zhang, L.Q. Zhu, Y. Zhang, M. Liu, and X.J. Wang, J. Appl. Phys. 102, 114903 (2007).CrossRef
40.
go back to reference R. Nathawat, A.K. Kumawat, S.S. Rathore, A.K. Mukhopadhyay, and K. Kabra, J. Nano- Electron. Phys. 13, 01030 (2021).CrossRef R. Nathawat, A.K. Kumawat, S.S. Rathore, A.K. Mukhopadhyay, and K. Kabra, J. Nano- Electron. Phys. 13, 01030 (2021).CrossRef
41.
Metadata
Title
Insights on the Effect of Applied Potential on the Properties of Electrodeposited p-Type Cuprous Oxide (Cu2O) Thin Films
Publication date
17-06-2021
Published in
Journal of Electronic Materials / Issue 9/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09057-6

Other articles of this Issue 9/2021

Journal of Electronic Materials 9/2021 Go to the issue

Topical Collection: Carbon-Based Materials for Energy Storage

Graphene for Thermal Storage Applications: Characterization, Simulation and Modelling