Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 12/2023

30-08-2023 | Research Article-Chemical Engineering

Integrating Artificial Immune Genetic Algorithm and Metaheuristic Ant Colony Optimizer with Two-Dose Vaccination and Modeling for Residual Fluid Catalytic Cracking Process

Authors: Amir Hossein Hamedi, Hossein Abolghasemi, Saeid Shokri, Hadi Jafar Nia, Farshad Moayedi

Published in: Arabian Journal for Science and Engineering | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the complex nature of processing units and the variability in raw oil properties, traditional first-principle methods are not always effective in predicting the output of these units without adapting them. Data-driven models have become popular alternatives because they are more adaptable to the variability in processing units, especially when large amounts of data are available. Feature selection is a crucial aspect of data-driven modeling, especially for processing units. It involves identifying and selecting the most important variables influencing the unit's output. The selected variables are then used as inputs to the model, which helps to reduce noise and improve model accuracy. Accordingly, this article presents a hybrid method that combines feature selection with data-driven modeling to create an accurate model for predicting the output of a Residue Fluid Catalytic Cracking (RFCC) process unit. The Metaheuristic Ant Colony Optimizer (MACO) algorithm was used to extract the best subset of features from the collected data, which were then used with the Artificial Immune Genetic Algorithm with Local Vaccination (AIGA-LV) method to select the optimal features. Finally, the Random Forest (RF) method was used to predict the products of the RFCC process unit. The data were collected from a refinery plant in central Iran for nine months. The proposed model was efficient in feature selection and flexible in handling different scenarios and products. It improved the accuracy to 99.17% at its best and improved the primary model by 3–20%. Therefore, this method could be useful for predicting the output of various industrial processes, especially the RFCC and FCC process units.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Otterstedt, J.E.; Gevert, S.B.; Järås, S.G.; Menon, P.G.: Fluid catalytic cracking of heavy (residual) oil fractions: a review. Appl. Catal. 22(2), 159–179 (1986)CrossRef Otterstedt, J.E.; Gevert, S.B.; Järås, S.G.; Menon, P.G.: Fluid catalytic cracking of heavy (residual) oil fractions: a review. Appl. Catal. 22(2), 159–179 (1986)CrossRef
2.
go back to reference Pinheiro, C.I.C.; Fernandes, J.L.; Domingues, L.; Chambel, A.J.S.; Graça, I.; Oliveira, N.M.C.; Cerqueira, H.S.; Ribeiro, F.R.: Fluid catalytic cracking (FCC) process modeling, simulation, and control. In: Industrial and Engineering Chemistry Research, pp. 1–29. American Chemical Society (2012) Pinheiro, C.I.C.; Fernandes, J.L.; Domingues, L.; Chambel, A.J.S.; Graça, I.; Oliveira, N.M.C.; Cerqueira, H.S.; Ribeiro, F.R.: Fluid catalytic cracking (FCC) process modeling, simulation, and control. In: Industrial and Engineering Chemistry Research, pp. 1–29. American Chemical Society (2012)
3.
go back to reference Ren, Y.; Liao, Z.; Sun, J.; Jiang, B.; Wang, J.; Yang, Y.; Wu, Q.: Molecular reconstruction: recent progress toward composition modeling of petroleum fractions. In: Chemical Engineering Journal, pp. 761–775. Elsevier B.V. (2019) Ren, Y.; Liao, Z.; Sun, J.; Jiang, B.; Wang, J.; Yang, Y.; Wu, Q.: Molecular reconstruction: recent progress toward composition modeling of petroleum fractions. In: Chemical Engineering Journal, pp. 761–775. Elsevier B.V. (2019)
4.
go back to reference Kim, S.W.; Lee, J.W.; Koh, J.S.; Kim, G.R.; Choi, S.; Yoo, I.S.: Formation and characterization of deposits in cyclone dipleg of a commercial residue fluid catalytic cracking reactor. Ind. Eng. Chem. Res. 51(43), 14279–14288 (2012)CrossRef Kim, S.W.; Lee, J.W.; Koh, J.S.; Kim, G.R.; Choi, S.; Yoo, I.S.: Formation and characterization of deposits in cyclone dipleg of a commercial residue fluid catalytic cracking reactor. Ind. Eng. Chem. Res. 51(43), 14279–14288 (2012)CrossRef
5.
go back to reference Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G.: The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)CrossRef Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G.: The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018)CrossRef
6.
go back to reference Hassani, H.; Silva, E.S.: Big data: a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev. 42(1), 74–89 (2018)CrossRef Hassani, H.; Silva, E.S.: Big data: a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev. 42(1), 74–89 (2018)CrossRef
7.
go back to reference Weekman, V.W.: A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors. Ind. Eng. Chem. Process Des. Dev. 7(1), 90–95 (1968)CrossRef Weekman, V.W.: A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors. Ind. Eng. Chem. Process Des. Dev. 7(1), 90–95 (1968)CrossRef
8.
go back to reference Weekman, V.W.; Nace, D.M.: Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors. AIChE J. 16(3), 397–404 (1970)CrossRef Weekman, V.W.; Nace, D.M.: Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors. AIChE J. 16(3), 397–404 (1970)CrossRef
9.
go back to reference Lee, L.-S.; Chen, Y.-W.; Huang, T.-N.; Pan, W.-Y.: Four-lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng. 67(4), 615–619 (1989)CrossRef Lee, L.-S.; Chen, Y.-W.; Huang, T.-N.; Pan, W.-Y.: Four-lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng. 67(4), 615–619 (1989)CrossRef
10.
go back to reference Sani, A.G.; Ebrahim, H.A.; Azarhoosh, M.J.: 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225, 322–335 (2018)CrossRef Sani, A.G.; Ebrahim, H.A.; Azarhoosh, M.J.: 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225, 322–335 (2018)CrossRef
11.
go back to reference John, Y.M.; Mustafa, M.A.; Patel, R.; Mujtaba, I.M.: Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit. Fuel 235, 1436–1454 (2019)CrossRef John, Y.M.; Mustafa, M.A.; Patel, R.; Mujtaba, I.M.: Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit. Fuel 235, 1436–1454 (2019)CrossRef
12.
go back to reference Qin, X.; Liu, J.; Wang, C.; Ye, L.; Xing, B.; Yu, W.; Xie, J.; Wang, H.; Ji, Y.; Lu, D.: Molecular level analysis on performance of diameter expanding reactor to improve gasoline quality in FCC process. Fuel 290, 119978 (2021)CrossRef Qin, X.; Liu, J.; Wang, C.; Ye, L.; Xing, B.; Yu, W.; Xie, J.; Wang, H.; Ji, Y.; Lu, D.: Molecular level analysis on performance of diameter expanding reactor to improve gasoline quality in FCC process. Fuel 290, 119978 (2021)CrossRef
13.
go back to reference Liu, J.; Chen, H.; Pi, Z.; Liu, Y.; Sun, H.; Shen, B.: Molecular-level-process model with feedback of the heat effects on a complex reaction network in a fluidized catalytic cracking process. Ind. Eng. Chem. Res. 56(13), 3568–3577 (2017)CrossRef Liu, J.; Chen, H.; Pi, Z.; Liu, Y.; Sun, H.; Shen, B.: Molecular-level-process model with feedback of the heat effects on a complex reaction network in a fluidized catalytic cracking process. Ind. Eng. Chem. Res. 56(13), 3568–3577 (2017)CrossRef
14.
go back to reference Ge, Z.: Review on data-driven modeling and monitoring for plant-wide industrial processes. In: Chemometrics and intelligent laboratory systems, pp. 16–25. Elsevier B.V. (2017) Ge, Z.: Review on data-driven modeling and monitoring for plant-wide industrial processes. In: Chemometrics and intelligent laboratory systems, pp. 16–25. Elsevier B.V. (2017)
15.
go back to reference Ge, Z.: Process data analytics via probabilistic latent variable models: a tutorial review. Ind. Eng. Chem. Res. 57(38), 12646–12661 (2018)CrossRef Ge, Z.: Process data analytics via probabilistic latent variable models: a tutorial review. Ind. Eng. Chem. Res. 57(38), 12646–12661 (2018)CrossRef
16.
go back to reference Su, Y.; Jin, S.; Zhang, X.; Shen, W.; Eden, M.R.; Ren, J.: Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm. Comput. Chem. Eng. 132, 106618 (2020)CrossRef Su, Y.; Jin, S.; Zhang, X.; Shen, W.; Eden, M.R.; Ren, J.: Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm. Comput. Chem. Eng. 132, 106618 (2020)CrossRef
17.
go back to reference Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D.: Robust fcc solute diffusion predictions from Ab-initio machine learning methods. Comput. Mater. Sci. 134, 160–165 (2017)CrossRef Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D.: Robust fcc solute diffusion predictions from Ab-initio machine learning methods. Comput. Mater. Sci. 134, 160–165 (2017)CrossRef
18.
go back to reference Zhang, R.; Nie, F.; Li, X.; Wei, X.: Feature selection with multi-view data: a survey. Inf. Fus. 50, 158–167 (2019)CrossRef Zhang, R.; Nie, F.; Li, X.; Wei, X.: Feature selection with multi-view data: a survey. Inf. Fus. 50, 158–167 (2019)CrossRef
19.
go back to reference Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.: Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. J. Renew. Sustain. Energy 9(6), 064102 (2017)CrossRef Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.: Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with PCA feature selection. J. Renew. Sustain. Energy 9(6), 064102 (2017)CrossRef
20.
go back to reference Kalaiselvi, B.; Thangamani, M.: An efficient pearson correlation based improved random forest classification for protein structure prediction techniques. Meas. J. Int. Meas. Confed. 162, 107885 (2020)CrossRef Kalaiselvi, B.; Thangamani, M.: An efficient pearson correlation based improved random forest classification for protein structure prediction techniques. Meas. J. Int. Meas. Confed. 162, 107885 (2020)CrossRef
21.
go back to reference Sharmin, S.; Shoyaib, M.; Ali, A.A.; Khan, M.A.H.; Chae, O.: Simultaneous feature selection and discretization based on mutual information. Pattern Recogn. 91, 162–174 (2019)CrossRef Sharmin, S.; Shoyaib, M.; Ali, A.A.; Khan, M.A.H.; Chae, O.: Simultaneous feature selection and discretization based on mutual information. Pattern Recogn. 91, 162–174 (2019)CrossRef
22.
go back to reference Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H.: Identifying phage virion proteins by using two-step feature selection methods. Molecules 23(8), 2000 (2018)CrossRef Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H.: Identifying phage virion proteins by using two-step feature selection methods. Molecules 23(8), 2000 (2018)CrossRef
23.
go back to reference Talavera, L.: An evaluation of filter and wrapper methods for feature selection in categorical clustering. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3646 LNCS, pp. 440–451. Springer (2005) Talavera, L.: An evaluation of filter and wrapper methods for feature selection in categorical clustering. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3646 LNCS, pp. 440–451. Springer (2005)
24.
go back to reference Dong, H.; Li, T.; Ding, R.; Sun, J.: A novel hybrid genetic algorithm with granular information for feature selection and optimization. Appl. Soft Comput. J. 65, 33–46 (2018)CrossRef Dong, H.; Li, T.; Ding, R.; Sun, J.: A novel hybrid genetic algorithm with granular information for feature selection and optimization. Appl. Soft Comput. J. 65, 33–46 (2018)CrossRef
25.
go back to reference Sakri, S.B.; Abdul Rashid, N.B.; Muhammad Zain, Z.: Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6, 29637–29647 (2018)CrossRef Sakri, S.B.; Abdul Rashid, N.B.; Muhammad Zain, Z.: Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6, 29637–29647 (2018)CrossRef
26.
go back to reference Ghimatgar, H.; Kazemi, K.; Helfroush, M.S.; Aarabi, A.: An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Syst. 159, 270–285 (2018)CrossRef Ghimatgar, H.; Kazemi, K.; Helfroush, M.S.; Aarabi, A.: An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowledge-Based Syst. 159, 270–285 (2018)CrossRef
27.
go back to reference Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)CrossRef Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H.: Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508 (2019)CrossRef
28.
go back to reference Sayed, S.; Nassef, M.; Badr, A.; Farag, I.: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst. Appl. 121, 233–243 (2019)CrossRef Sayed, S.; Nassef, M.; Badr, A.; Farag, I.: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst. Appl. 121, 233–243 (2019)CrossRef
29.
go back to reference Jiao, L.; Wang, L.: A novel genetic algorithm based on immunity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 552–561 (2000)CrossRef Jiao, L.; Wang, L.: A novel genetic algorithm based on immunity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 552–561 (2000)CrossRef
30.
go back to reference Wang, H.; Bah, M.J.; Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)CrossRef Wang, H.; Bah, M.J.; Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)CrossRef
31.
go back to reference Chen, C.; Zhou, L.; Ji, X.; He, G.; Dai, Y.; Dang, Y.: Adaptive modeling strategy integrating feature selection and random forest for fluid catalytic cracking processes. Ind. Eng. Chem. Res. 59(24), 11265–11274 (2020)CrossRef Chen, C.; Zhou, L.; Ji, X.; He, G.; Dai, Y.; Dang, Y.: Adaptive modeling strategy integrating feature selection and random forest for fluid catalytic cracking processes. Ind. Eng. Chem. Res. 59(24), 11265–11274 (2020)CrossRef
32.
go back to reference Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z.: an improved feature selection algorithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018)CrossRef Peng, H.; Ying, C.; Tan, S.; Hu, B.; Sun, Z.: an improved feature selection algorithm based on ant colony optimization. IEEE Access 6, 69203–69209 (2018)CrossRef
33.
go back to reference Chen, C.; Lu, N.; Wang, L.; Xing, Y.: Intelligent selection and optimization method of feature variables in fluid catalytic cracking gasoline refining process. Comput. Chem. Eng. 150, 107336 (2021)CrossRef Chen, C.; Lu, N.; Wang, L.; Xing, Y.: Intelligent selection and optimization method of feature variables in fluid catalytic cracking gasoline refining process. Comput. Chem. Eng. 150, 107336 (2021)CrossRef
34.
go back to reference Awad, M.; Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress (2015) Awad, M.; Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress (2015)
35.
go back to reference Michalopoulos, J.; Papadokonstadakis, S.; Arampatzis, G.; Lygeros, A.: Modelling of an industrial fluid catalytic cracking unit using neural networks. Chem. Eng. Res. Des. 79(2), 137–142 (2001)CrossRef Michalopoulos, J.; Papadokonstadakis, S.; Arampatzis, G.; Lygeros, A.: Modelling of an industrial fluid catalytic cracking unit using neural networks. Chem. Eng. Res. Des. 79(2), 137–142 (2001)CrossRef
Metadata
Title
Integrating Artificial Immune Genetic Algorithm and Metaheuristic Ant Colony Optimizer with Two-Dose Vaccination and Modeling for Residual Fluid Catalytic Cracking Process
Authors
Amir Hossein Hamedi
Hossein Abolghasemi
Saeid Shokri
Hadi Jafar Nia
Farshad Moayedi
Publication date
30-08-2023
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 12/2023
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07882-x

Other articles of this Issue 12/2023

Arabian Journal for Science and Engineering 12/2023 Go to the issue

Premium Partners